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Introduction

This thesis is about Dynamic Programming and in particular about algorithms
based on the algorithm designed by Held and Karp (and also independently
by Bellman) offering the best complexity known today to optimally solve the
Traveling Salesman Problem.

We see this algorithm as a general way to solve problems for which each
solution can be represented as a sequence of nodes and where the goal can be
defined as finding the best sequence. If all sequences have to be evaluated then
a brute-force approach would result in an O(n!) algorithm as there are n! ways
to create a sequence of n unique nodes. With Dynamic Programming this effort
can be reduced as Dynamic Programming evaluates in principle one partial
sequence per subset. Since there are O(2n) subsets, Dynamic Programming can
exponentially decrease the effort of evaluating all sequences compared to the full
enumeration of all sequences.

Such a Dynamic Programming algorithm has mainly theoretical implications
as an algorithm providing the best known time complexity guaranteed to solve a
problem to optimality. Since all possible sequences are stil evaluated implicitly,
the time complexity of such an algorithm is still exponential, although largely
exponentially ( n!

2n «
√

2πn ( n2e)n) less then explicit evaluation of all sequences.
Since multiple partial sequences have to be kept in memory to be evaluated later,
the memory requirement of such an algorithm is also exponential. Both the
exponential run time and the exponential memory requirements make practical
use of such an algorithm limited. However, parts of the state space may be
evaluated implicitly by adding bounding arguments, similar to branch and bound.
Also converting a Dynamic Programming algorithm into a heuristic raises its
practical value. With proper bounding good solutions can be found by using
only a very small part of the state space. Sometimes bounding can even be so
restrictive that the complete state space can be evaluated in reasonable time.

This dissertation emerged while researching the applicability of general op-
timization frameworks for vehicle routing at . Dynamic Programming
proved to be a very rich modeling framework for routing, handling restrictions
which are known to challenge other techniques. Scheduling lacked such a rich
modeling framework, for instance adding maintenances challenges the integer
linear models beyond usability. Applying Dynamic Programming to the Job
Shop Scheduling Problem was therefore a goal, with the added benefit of bringing
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Introduction

a new rich modeling framework to scheduling, which we could use to solve the
challenging version with maintenances.

We believe that contributing with a new optimal algorithm for the Job Shop
Scheduling Problem helps reviving the combinatorial optimization research and
shows that Dynamic Programming is still a powerful technique from both the
theoretical and the practical points of view.

The first chapter, Dynamic Programming, gives an introduction to Dynamic
Programming in general and how to use Dynamic Programming to find solutions
for problems that can be represented as sequences of nodes by finding optimal
solutions for subsets. The problems described in the chapter Dynamic Program-
ming are solely for illustrative reasons, we show how to solve for instance the
bipartite matching problem by an algorithm that requires an exponential effort.
This is clearly not a good idea neither for theoretical nor for practical reasons,
since the problem can be optimally solved by efficient deterministic polynomial
algorithms. However, it serves important didactic purposes in understanding
the rest of this thesis.

While the first chapter does not aim at providing an algorithm with the
best known complexity to solve a problem to optimality, the second chapter
does. This chapter, Sequencing, Routing and Scheduling, describes Dynamic
Programming algorithms for the well-known Traveling Salesman Problem, Vehicle
Routing Problem and Job Shop Scheduling Problem. The first, is the well-known
algorithm of Held and Karp [62] and Bellman [17]. The second, and third are
novel and appeared in [59,60]. Dynamic Programming provides the Job Shop
Scheduling Problem with the first non Brute-Force optimal algorithm known
to us which is not based on Branch and Bound. It also has the best known
complexity to solve the problem to optimality.

Ideas similar to Branch and Bound can be used to improve the performance
of a Dynamic Programming algorithm. This is described in the third chapter,
The Dynamic Programming State Space. Also a procedure to find all optimal
solutions as well as ways to convert an optimal Dynamic Programming algorithm
into a heuristic can be found in this chapter.

Chapter four, The Vehicle Routing Problem, shows the effects of bounding
on the Dynamic Programming algorithm for the Vehicle Routing Problem. For
this we use computational results on well-known benchmark instances for the
Capacitated Vehicle Routing Problem. Furthermore, it contains an overview of
several extensions of the Vehicle Routing Problem. We show how these extensions
can be solved by extending the Dynamic Programming algorithm. This creates
a general modeling framework able to tackle most of the challenging versions
of Vehicle Routing Problem found in the literature, including some that have
received almost no attention so far. These are extensions of our work which
appeared in [59]. We also show how this unification leads to a general instrument
for pricing in column generation frameworks.

In chapter five, The Job Shop Scheduling Problem, we show how to incorporate
bounding into the Dynamic Programming for the Job Shop Scheduling Problem
and how to find all optimal solutions for JSSP instances. The computational
results on the Job Shop Scheduling Problem in this chapter indicate that the

2
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complexity of this algorithm as proven in chapter 2 may possibly be improved. For
example, by using some tighter bounds on the number of partial solutions created
than those known to us. Also, it shows the effects of the bounded Dynamic
Programming algorithm as well as the number of all optimal solutions for some
small instances. We also show how Dynamic Programming with bounding can be
used to validate or even find new lower bounds. For 16 out of the 97 unsolved Job
Shop Scheduling Problem instances we were able to improve the lower bound.

In the sixth and last chapter, The Job Shop Scheduling Problem with Sched-
uled Maintenances, we extend the Job Shop Scheduling Problem by adding
maintenances on the machines. For this new problem we create a Mixed-Integer
Programming formulation and we extend the Dynamic Programming algorithm
to include these maintenances. We create a new bounding algorithm for this
extension which can be used to improve the performance of the Dynamic Program-
ming algorithm. We propose a method to generate instances for this extension,
which appears to be very hard to tackle via Mixed-Integer Programming. How-
ever, with a bounded Dynamic Programming algorithm many of our generated
instances could be solved to optimality.

Appendix A: Computational Results gives a detailed overview of all com-
putational results as well as the information of the machine and software used.
Appendix B: Job Shop Scheduling Problem Instances provides an overview of
the Job Shop Scheduling Problem instances used in this thesis as well as their
upper bounds and lower bounds. Also, the origin of these instances and their
respective bounds are given in this appendix.

Finally, we want to point out the Glossary of Notation at the end of this
dissertation. Part of this glossary can also be found on the inside of the cover
flaps.

3
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1

ONE

Dynamic Programming

This chapter introduces the basics of Dynamic Programming and presents the
notation used throughout this dissertation, summarized in the Glossary of
Notation (page 171). The second part of this chapter focusses on Dynamic
Programming over sets. The famous Dynamic Programming algorithm for the
Traveling Salesman Problem by Held and Karp [62] and Bellman [17] can be
seen as an adaptation of this general principle for a particular problem.

1.1 The basics of Dynamic Programming
The basic idea behind Dynamic Programming (DP) is to split a problem re-
cursively into simpler subproblems, the optimal solution to the problem can
be easily found using the optimal solutions to these subproblems. The optimal
solutions of these subproblems are found by splitting the subproblems again
into even smaller problems, continuing until the solution of each subproblem is
trivial. When an optimal solution of a (sub)problem can be found solely based
on the optimal solutions of its subproblems the DP algorithm yields an optimal
solution for the original problem. This is called the Principle of Optimality [see
16, chap. III.3.]. The recurrence relation that defines the relation between all the
subproblems and how each problem is split up is called the Bellman equation.
Ultimately, a DP algorithm amounts to solving the smallest trivial subproblems
first, use their solutions to solve increasingly larger subproblems, until finally
the complete problem is solved.

Intuitively, when we would calculate an optimal solution using a recurrence
relation, we start with the whole problem, we then search recursively for the
optimal solutions of the needed sub-problems, until the subproblems become
trivial. This is the so-called backward algorithm. As stated above, we can also
start with solutions for the trivial sub-problems and expand these to solutions
for larger sub-problems, at each subproblem we take the best of the so created
solutions, which is then optimal. Finally we arrive at the optimal solution of the
whole problem. This is the so-called forward algorithm. For reasons soon to be
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Dynamic Programming

explained, we focus our research on forward type of algorithms
The subproblems in the DP structure are called states. All states together

form the so-called state space, this state space can be divided in stages containing
states which represent sub-problems of the same size.

Definition 1.1
A sub-problem, or state, is defined by ξφ. The subscript φ defines the specifics
of the sub-problem. ◻
Definition 1.2
Let ς denote a solution. With ςφ we define a solution to the sub-problem, or
state, ξφ. By ξ̌φ we denote an optimal solution to state ξφ. ◻
Definition 1.3
By ς�i we denote an expansion in the forward DP algorithm from solution
ς with i. This is a new solution of a larger sub-problem. The definition of i
depends on the specific problem. ◻

We can write the principle of optimality in terms of these state definitions.

Proposition 1.4
When the value of an optimal solution ξ̌φ for a state ξφ can be expressed
using only the value of optimal solutions of other states ξ′

φ′ and the expansion
i such that ξ̌′

φ′�i results in a solution in ξφ, the principle of optimality
holds. ◻
Proof This is essentially the principle of optimality where the definition of
the state ξφ defines a sub-problem. ∎
Corollary 1.5
If the principle of optimality holds, the feasibility of the expansion ςφ�i for
a solution ςφ ∈ ξφ only depends on ξφ and i, not on the specific solution ςφ.◻

In the rest of this section we illustrate, using three simple problems, the basics
of DP and some important properties.

1.1.1 Fibonacci numbers
One of the most well-known recurrence relations is the relation between the
Fibonacci numbers. The Fibonacci numbers are defined by Fn = Fn−1 + Fn−2
and F0 = 0, F1 = 1. These numbers are named after Leonardo Pisano, known as
Fibonacci, who described them in 1202 [97], see [109] for a recent translation.
The definition used here, starting with F0, is from Lucas [80] who generalized this
sequence. The recurrence relation follows directly from the definition, problem
Fn can be found directly from the solutions of subproblems Fn−1 and Fn−2. The
relation between the different subproblems is described in figure 1.1, where the
green and blue lines represent Fn−1 and Fn−2, respectively.

6



1

1.1 The basics of Dynamic Programming

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

Figure 1.1: Relation between the Fibonacci numbers

Algorithm 1.1 DP algorithm for finding the n’th Fibonacci number
Input: A natural number n
Output: Fibonacci number Fn

F0 = 0
F1 = 1
for i = 2 to n do

Fi = Fi−1 + Fi−2

return Fn

These relations can always be described in a directed acyclic graph, whereas
a cycle would include a subproblem whose solution depends on its own solution.
This results in DP algorithm 1.1.

Note that a straightforward use of the recurrence relation as a recursive func-
tion, see algorithm 1.2, has complexity O(2n) instead of O(n) of algorithm 1.1.
This illustrates the difference between a recursive and a DP algorithm. The
recursive algorithm will calculate the same value multiple times while the DP
algorithm will save this value for later use. Naturally memoization, i.e., caching a
previously calculated result to return later, will also result in an O(n) algorithm.
Memoization in a recursive algorithm will result essentially in a backwards DP,
while algorithm 1.1 is a forward DP algorithm. Later in this chapter we will take
a closer look at the differences between forward and backward DP algorithms.

Algorithm 1.2 Recursive algorithm for finding the n’th Fibonacci number
Input: A natural number n
Output: Fibonacci number Fn

Fib(n)
if n = 0 or n = 1 then

return n
else

return Fib(n − 1) + Fib(n − 2)
7
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Dynamic Programming

1.1.2 Longest common subsequence
The longest common subsequence problem is the problem of finding the longest
subsequence occurring in two given sequences [121,18]. A subsequence is a
sequence that can be constructed by deleting elements from the original sequence
without changing the order. The subsequence does not have to be consecutive
within the original sequence. One of the applications of the longest common
subsequence problem is finding the longest common subsequence in two sequences
of DNA. An example of two sequences with a common subsequence ⟨P,T, I,A,L⟩
is

OPTIMAL
PICTORIAL

For the length of the longest common subsequence we can formulate a recurrence
relation by looking at the last element in both sequences. Define LCS(i, j) as the
length of the longest common subsequence of the sequences consisting of the first
i elements of the first sequence s1 and the first j elements of the second sequence
s2. If the last elements are the same in both sequences, s1(i) = s2(j), then
we can remove this element from both sequences and find the longest common
subsequence in the remaining sequences, thus LCS(i, j) = LCS(i − 1, j − 1) + 1.
If the last elements are different in both sequences, then that element can
be removed from one of the sequences without changing the longest common
subsequence, so LCS(i, j) = LCS(i − 1, j) or LCS(i, j) = LCS(i, j − 1), thus
LCS(i, j) = max{LCS(i − 1, j), LCS(i, j − 1)}. So the recurrence relation
becomes

LCS(i, j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if i = 0 or j = 0
LCS(i − 1, j − 1) + 1 if s1(i) = s2(j)
max{LCS(i − 1, j), LCS(i, j − 1)} otherwise

and the principle of optimality follows from the reasoning above. The complete
values of the example above are given in figure 1.2.

P I C T O R I A L
0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
O 1 0 0 0 0 0 1 1 1 1 1
P 2 0 1 1 1 1 1 1 1 1 1
T 3 0 1 1 1 2 2 2 2 2 2
I 4 0 1 2 2 2 2 2 3 3 3
M 5 0 1 2 2 2 2 2 3 3 3
A 6 0 1 2 2 2 2 2 3 4 4
L 7 0 1 2 2 2 2 2 3 4 5

j
i

s2
s1

Figure 1.2: Longest Common Subsequence of OPTIMAL and PICTORIAL
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For the longest common subsequence a state is defined by i and j leading
to a state definition of ξi,j , thus φ = (i, j). Note that the state space can
be divided in equal sized sub-problems in two directions, i and j. For the
longest common subsequence there are possibly three solutions associated with
each state, for state ξi,j these three solutions ς, ς ′, ς ′′ are based on the optimal
solutions ξ̌i−1,j−1, ξ̌i−1,j , ξ̌i,j−1 of states ξi−1,j−1, ξi−1,j , ξi,j−1, respectively. The
first solution ς originating from ξi−1,j−1 is only feasible if s1(i) = s2(j). So
the solution ς = ⟨ξ̌i,j , s1(i)⟩ is the solution ξ̌i,j with the newly found common
element s1(i) added, solutions ς ′ and ς ′′ are the same solutions as ξ̌i−1,j and
ξ̌i,j−1, respectively. Algorithm 1.3 describes a DP algorithm to find the longest
common subsequence of two sequences, where the function longest selects the
longest sequence. The complexity of this algorithm is O(mn), where m and
n are the lengths of sequences s1 and s2, respectively. Note that the result of
algorithm 1.3 is the longest common subsequence instead of its length given by
the recursive function LCS described above.

Algorithm 1.3 DP algorithm for the longest common subsequence
Input: Two sequences s1 and s2
Output: The longest common subsequence of s1 and s2

m = length(s1)
n = length(s2)
for all ξ̌i,j such that i = 0 or j = 0 do

ξ̌i,j = ⟨ ⟩ // empty sequence

for i = 1 to m do
for j = 1 to n do

if si(i) = s2(j) then
ξ̌i,j = ⟨ξ̌i−1,j−1, s1(i)⟩

else
ξ̌i,j = longest (ξ̌i−1,j , ξ̌i,j−1)

return ξ̌m,n

Backtracking

In the complexity analysis of algorithm 1.3 the concatenation of the sequences
is ignored. This would add an extra factor equal to the length of the resulting
sequence, at most n orm. However, the length of the longest common subsequence
can be found in O(mn) time by algorithm 1.3. The actual longest common
subsequence can be found in O(m + n) by backtracking in the DP state space.
We choose to represent a state by a sequence (solution), rather than by the
length (cost) of a sequence, to be consistent in the representation of the states
of all algorithms in this dissertation.

9
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In order to find the longest common subsequence in the state space of a DP
algorithm that finds the length of the longest common subsequence, we walk
backwards through the created state space. We start at the resulting value in the
last state, and move to the state which contributed to the value of the current
state. The path through the state space of the example in figure 1.2 is marked
with a green background. This path can be found by moving back in one of the
original sequences to a state either above or on the left of the current state if the
value is equal to the value of the current state. If the elements in both sequences
are equal for the current state, we may move back in both sequences, thereby
moving to the state above left of the current state, which value will be 1 lower as
the value of the current state. All three moves may be available simultaneously,
in which case multiple paths through the state space are feasible and all will
result in an optimal solution. It is possible that multiple paths through the state
space belong to the same optimal solution. With multiple optimal solutions the
number of possible paths in the state space can explode. To obtain all optimal
solutions efficiently DP can be used by using the state space of the first DP
algorithm.

For a state space with a number of states that makes it practical to store
in memory, such as for the longest common subsequence, backtracking is very
applicable. However, for the exponentially large state spaces described in the
following chapters this becomes impractical or even impossible. The complete
state space must be saved during the algorithm to be able to traverse it later.

1.1.3 Knapsack
As figure 1.2 already shows a recurrence relation may define several states with
the same solution. Finding the same solution over and over again for different
states may however be avoided. To illustrate this we take a look at the Knapsack
problem [83,71].

We have a knapsack that can hold a maximum total weight of W and we
have n items, each item i has a weight wi and a value vi. The Knapsack problem
consists of finding the items to carry as much value as possible without loading
too much weight in our knapsack. There are two main variants of the Knapsack
problem, with repetition — where we have unlimited copies for each item — and
without repetition — with just one instance of each item — also called the 0–1
Knapsack problem. First assume that we have unlimited quantities of each item.
Let K(w) be the maximal value we can carry in a knapsack with maximum
weight of w (0 ≤ w ≤ W ). We want to split this problem into subproblems. If
item i is carried in the optimal solution then removing this item will result in the
optimal solution for a smaller knapsack, thus K(w−wi) = K(w)−vi. If the value
K(w) − vi would be non-optimal for K(w − wi), K(w) would be non-optimal
either; otherwise we could improve K(w) by adding item i to the optimal solution
resulting from K(w − wi). Since we do not know which item is in the optimal
solution we have to try this for all items that fit in the current knapsack.

K(w) = max
i∶wi≤w {K(w − wi) + vi} ,

10
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Algorithm 1.4 DP algorithm for the Knapsack
Input: A total weight W of the knapsack and a number of items n

For each item i ∈ {1, . . . , n} a weight wi and a value vi
Output: The items in the optimal Knapsack solution

ξ̌0 = ∅
for w = 1 to W do

ξ̌w = ∅
for i = 1 to n do

if wi ≤ w and C(ξ̌w) < C(ξ̌w−wi
) + vi then

ξ̌w = ξ̌w−wi
∪ {i}

return ξ̌W

is the resulting recurrence relation. The only state variable we need is w, i.e., a
state is represented by ξw. The value of an optimal solution of a state is equal
to the value of the recurrence relation C(ξ̌w) = K(w) where C is the function
that returns the value, or cost, of a solution. Algorithm 1.4 describes the DP
algorithm corresponding to this recurrence relation, which has a complexity of
O(nW ).

For the 0–1 Knapsack problem, when we have a single instance of each item,
we cannot use the same relation, as we do not know if item i is already used
in the optimal solution ξ̌w−wi

. To keep track of which items are used, we not
only look at smaller knapsacks, but also at fewer items. We define a state ξφ
with φ = (w, j) which defines the 0–1 knapsack problem with maximum weight
w using only items 1, . . . , j. The recurrence relation now becomes

Algorithm 1.5 Backward DP algorithm for the 0–1 Knapsack
Input: A total weight W of the knapsack and a number of items n

For each item i ∈ {1, . . . , n} a weight wi and a value vi
Output: The items in the optimal Knapsack solution

for all ξ̌w,i such that w = 0 or i = 0 do
ξ̌w,i = ∅

for i = 1 to n do
for w = 1 to W do

ξ̌w,i = ξ̌w,i−1
if wi ≤ w and C(ξ̌w,i) < C(ξ̌w−wi,i−1) + vi then

ξ̌w,i = ξ̌w−wi,i−1 ∪ {i}
return ξ̌W,n

11
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C(ξ̌w,i) = max {C(ξ̌w−wi,i−1) + vi, C(ξ̌w,i−1)} ,
where the first expression in the maximum is only used if wi ≤ w, otherwise
the maximum weight of the knapsack would be exceeded. The cases represent
the choice of putting item i in the knapsack and the choice of leaving item i
out of the knapsack, respectively. The optimal solution, denoted by ς̊, will be
ξ̌W,n. Algorithm 1.5 describes the DP algorithm according to this recurrence
relation and has a complexity of O(nW ). We see that the new state is initialized
by leaving the item out of the knapsack, which is always feasible, this value is
replaced by the choice of putting the item in the knapsack when this is feasible
and better.

Item Weight Value
1 1 11
2 5 20
3 2 14
4 3 17

Let us now have a look at an example of a 0–1 Knapsack problem with 4
items and a maximum total weight of 6. When we look at optimal values of
all states in figure 1.3, we see a lot of equal values. The same solution is often
repeated.

0 1 2 3 4
0 0 {} 0 {} 0 {} 0 {} 0 {}

1 0 {} 11 {1} 11 {1} 11 {1} 11 {1}

2 0 {} 11 {1} 11 {1} 14 {3} 14 {3}

3 0 {} 11 {1} 11 {1} 25 {1,3} 25 {1,3}

4 0 {} 11 {1} 11 {1} 25 {1,3} 28 {1,4}

5 0 {} 11 {1} 20 {2} 25 {1,3} 31 {3,4}

6 0 {} 11 {1} 31 {1,2} 31 {1,2,3} 42 {1,3,4}

i
w

Figure 1.3: State space of backward DP for the 0–1 knapsack example

We see for example that the optimal solution for all 4 items and a maximal
weight of 4 (ξ̌4,4) is 28, this is constructed from the values of ξ̌4,3 and ξ̌1,3, since
the weight of item 4 is 3. This results in 28 = max {25, 11 + 17}.
1.1.4 Minimizing redundancy
The subproblems of the stage with only item 1, thus the states ξ˚,1, have only
two possible solutions. Item 1 is either used or not, with values 11 and 0,

12
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respectively. However, we have to calculate the solutions for all 7 subproblems
[see 6, chap. 7.3.].

To reduce the number of redundancies where the same solution is the optimal
solution for different states, we redefine our states and do not solve the larger
problems with optimal solutions of slightly smaller subproblems. Instead we use
the optimal solutions of the smaller subproblems to find solutions for slightly
larger problems. This looks the same, but it changes the focus from all the
subproblems to the existing solutions. Essentially, this is the difference between
calculating the DP state space in a backward or forward manner.

For the 0–1 knapsack problem we redefine the states ξ˚,i to a single state
ξi. However, we cannot have a single optimal solution per state anymore, we do
have to keep multiple solutions per state. In state ξ0 exists only a single solution
with weight and value 0. As we know, the next state ξ1 has two solutions based
on the single solution in ξ0. We find these solutions by expanding the solution
in ξ0 to two new solutions, by choosing whether to carry item 1 or not. State ξ2
has now 4 solutions, by choosing wether to carry item 2 expanded from the two
solutions in ξ1. If we continue in this matter we have a brute force algorithm
enumerating all possible solutions, so we have to find a way to safely ignore
certain solutions. To achieve this we have to compare the solutions of a state
and find solutions that are dominated by other solutions in the same state.

Definition 1.6
A completion of a partial solution is a solution of the original problem formed
by a series of expansions until the last stage of the partial solution. ◻
Definition 1.7
One solution ς dominates an other solution ς ′ when the best completion of ς
results in a better or equal solution than all completions of ς ′. ◻
As example of domination we that we look at the solutions for the first three

items. Start with the solution that takes only item 2, which is in the original
state space state ξ̌5,2. This can be expanded by choosing not to add item 3 into
the knapsack, this solution still has a weight of 5 and a value of 20. However, we
have also a solution taking items 1 and 3, in the original state space ξ̌3,3, which
has a weight of 3 and a value of 25. Both solutions are colored orange in the
state space. So anything we can add into the first knapsack can in fact also be
added into the second. There is even more space left and the value of the items
carried is already higher. We conclude that we can discard the first solution,
since it is dominated by the second. Note that choosing to add item 3 to the
first solution ξ̌5,2 is infeasible, since it will result in a weight of 7.

Until now, we had a single value, typically cost, to compare solutions within
a single state. Now we have two relevant values to compare solutions within the
same state, the value v and the weight w.

Definition 1.8
Let γ be an array of variables that are used to compare solutions in a state.
We define the state as ξφ,γ . The values of φ are the same for all solutions in
this state. The values of γ may differ between these solutions. ◻
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For the 0–1 Knapsack we use a new state definition with γ = (v, w) and the fixed
variable φ = (i), leading to a new state definition for ξφ,γ . When φ and γ are
not used as shorthand the variables represented by φ and γ are separated by

??
resulting in ξi ?? v,w.

Until now, we had a single value to compare solutions within a state leading
to a single optimal solution representing each state. Since we have now multiple
values to compare solutions on, we cannot define a single optimal solution,
instead we have possibly multiple non-dominated solutions. Within the same
state all solutions are characterized by the same values for φ but possibly they
have different values for γ, and we compare the variables of γ to find dominated
solutions.

Definition 1.9
Define u as a pairwise comparison between the values of two arrays γ and γ′.
We write γ u γ′ when the values γ, for example (v, w), of one solution ςφ,γ
dominate the values γ′, for example (v′, w′), of another solution ς ′

φ,γ′ . When
two solutions ς, ς ′ do not dominate each other we write ς � ς ′ or therefore
γ � γ′. We write ςφ,γ ≐ ς ′

φ,γ′ when two solutions have equal values of γ, thus
γ ≐ γ′ and therefore γ = γ′. ◻

In this case u is equal to {≥, ≤}, i.e., the values of v and w are compared by≥ and ≤, respectively. Thus, when ς dominates ς ′ we have v ≥ v′ and w ≤ w′.
Note that the subscripts φ and γ are also used to describe properties of single
solutions, u will also be used to describe solutions dominating each other, thus
ς u ς ′ or ςφ,γ u ς ′

φ,γ′ .

Definition 1.10
We denote by ξ̂ the set of non-dominated solutions within a state ξ in contrast
to the optimal solution denoted by ξ̌. When there are multiple non-dominated
solutions in ξi with ς ≐ ς ′ ≐ ς ′′ only one of these solutions will be in ξ̂i, since
we are interested in just one optimal solution. ◻
In figure 1.4 we see the total state space of the altered DP algorithm, as we

can see each stage consists only of a single state ξφ,γ , with φ = i. Each state stores
no longer a single optimal solution ξ̌i,w but a set of non-dominated solutions
ξ̂i. The optimal solution will now be the solution ςn ?? v,w with v = maxς∈ξ̂n

C(ς).
Algorithm 1.6 describes the forward DP algorithm for the 0–1 Knapsack, note the
differences with algorithm 1.5. The complexity of algorithm 1.6 is also O(nW ).
However, the typical running time would be lower, since not for all values of
w ≤ W a non-dominated solution exists. One clear advantage occurs when a
problem instance of the Knapsack is altered by multiplying all weights wi and
the maximum weight W with the same (integer) factor F , the running time of
algorithm 1.5 is multiplied by F while the running time of algorithm 1.6 stays
the same.

The fundamental difference between forward and backward calculation lies in
the possibility for the forward calculation to evaluate solutions only when there is
an actual choice to be made, while the backward calculation follows a predefined
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ξ0 ξ1 ξ2 ξ3 ξ4

0, 0 0, 0 0, 0 0, 0 0, 0

11, 1 11, 1 11, 1 11, 1

14, 2 14, 2

17, 3

25, 3 25, 3

28, 4

20, 5 20, 5 20, 5

31, 5

31, 6 31, 6 31, 6

42, 6

34, 7 34, 7

37, 8

45, 8 45, 8

48, 9

51, 10

62, 11Not evaluated

Not feasible

Dominated

Non-dominated

value v, weight w

Not evaluated

Dominated by

Use item

Do not use item

Figure 1.4: State space of forward DP for the 0–1 Knapsack example

path. The recurrence relation defines the cost for a state where all other variables
are fixed. The recurrence relation as well as the backward calculation of the
DP state space can have only one single variable, the cost, in the variables γ to
compare within a single state. This leads to a single optimal solution for the
state ξ̌. As the value of the cost, and thereby γ, is defined by the recurrence
relation, these are left out of the state definitions in the recurrence relation. Since
multiple variables in γ cannot effectively be used in the recurrence relation or
backwards evaluation of the state space, the original recurrence relation stays the
same. The forward calculation of the DP state space is just combining several
states into a single state using several non-dominated solutions as representatives
for a state instead of a single optimal solution. Using this method we can profit
if a lot of solutions in different original states are actually the same solution or
the range of a variable in the state definition is unknown leading to evaluating
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Algorithm 1.6 Forward DP algorithm for the 0–1 Knapsack
Input: A total weight W of the knapsack and a number of items n

For each item i ∈ {1, . . . , n} a weight wi and a value vi
Output: The items in the optimal Knapsack solution

ξ̂0 = {ς0 ?? 0,0 = ∅}
for i = 1 to n do

for all ςi−1
?? v,w ∈ ξ̂i−1 do

// N represents the set of 1 or 2 new solutions
N = {ςi−1

?? v,w} // Leave item i out of the knapsack
if w + wi ≤W then

N = N ∪ {ςi−1
?? v,w ∪ {i}} // Adding item i to the knapsack

for all ς ∈ N do
if ς ì ςi,@ςi ∈ ξ̂i then

D = { ςi ∈ ξ̂i ∣ ς u ςi } // All solutions in ξ̂i dominated by ς

ξ̂i = {ς} ∪ ξ̂i \D
ς̊ ∈ { ς ∈ ξ̂n ∣ C(ς) = max

ς∈ξ̂n

C(ς) }
return ς̊

all states for all possible values of that particular variable. Note that for a state
definition ξφ,γ the set of dominated solutions for a state ξφ,γ is ξ̂φ, as all values
of φ are equal for the corresponding solutions while the values of γ may vary,
this corresponds to the removal of the cost in the recurrence relation, which is
the only variable in γ for the backward calculation.

Proposition 1.11
If the set of non-dominated solutions ξ̂φ for a state ξφ,γ can be expressed
using only:

• the value of non-dominated solutions of other states ξ′
φ′,γ′ ,

• the expansion i such that ξ̂′
φ′�i results in a solution in ξφ,γ .

If also u, and thereby the choice of γ, is defined such that a dominating value
always lead to equal or more slack than the dominated values, when making
the same expansions. Then the principle of optimality holds. ◻
Proof Follows from proposition 1.4 and the state domination defined by u.
This prevents that a solution can be dominated for which there exists a feasible
expansion such that the same expansion is infeasible for the dominating
solution. In other words, no set of expansions leads to an infeasible solution
when expanded from the dominating solution, while the same set of expansions
leads to a feasible solution from the dominated solution. ∎
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Similar to corollary 1.5 the feasibility only depends on the values of φ and γ and
the expansion, not on the expanded solution.

1.2 Dynamic Programming over sets
Since all DP algorithms in this dissertation are done over sets, we show three ex-
amples of DP algorithms over sets, before starting with the famous DP algorithm
for the Traveling Salesman Problem of Held and Karp [62] and Bellman [17] in
the next chapter. We show examples of DP algorithms for the following three
problems

• Linear assignment problem

• Steiner tree in graphs

• Single machine total weighted tardiness scheduling problem

The algorithms we present here are chosen for their example value, they are not
chosen for efficiency. The Linear assignment problem can be solved in polynomial
time [74], the last two are NP-hard [50]. However, all three DP algorithms use
exponential time to solve these problems. A similar DP algorithm for the Linear
assignment problem is also used as example in [68, chap. 2]. The DP algorithm
for the Steiner tree in graphs in this section should not be confused with known
and more efficient DP algorithms for the Steiner tree in graphs as given in
[39,47,48]. The Single machine total weighted tardiness scheduling problem
described in this section contains also release times (1∣rj ∣řwjTj [see 58]), in [1]
a similar DP algorithm can be found without release times.

The Linear assignment problem shows DP over sets, while Steiner tree in
graphs and the Single machine total weighted tardiness scheduling problem show
the difference between forward and backward calculation of the DP algorithm.
With the Steiner tree in graphs we do not know the state that will result in
the optimal solution while with the Single machine total weighted tardiness
scheduling problem we do not know beforehand the possible values for a state
variable.

1.2.1 Linear assignment problem
The linear assignment problem aims at finding a bijection between two sets of
equal size, with minimal cost. For example we have a project with a set T of
n tasks and a set E of n employees, i.e., ∣T ∣ = ∣E∣ = n. Not every employee
can handle every task with the same efficiency, so for each combination of task
and employee we have a cost c(t, e) (t ∈ T , e ∈ E). Now we have to find the
assignment a ∶ T Ñ E such that the total cost of the project C = ř

t∈T c (t, a(t))
is minimized. More information on assignment problems can be found in [23].

To create the DP algorithm we first define an order t1, . . . , tn in which the
tasks will be assigned. Now we create a state definition of ξS ?? c where S Ď E
is the set of employees already assigned a task and c is the sum of the cost of
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the current partial assignment. An expansion of the optimal solution ξ̌S of state
ξS will be the assignment of an employee e ∈ E \ S to task t∣S∣+1. Note that we
have a single optimal solution ξ̌ per state ξ as γ consists of a single element, the
cost. The recurrence relation now becomes

C (ξ̌S) = min
i∈S {C (ξ̌S\{i}) + c (i, t∣S∣)} .

As we can see, the new cost only depends on the cost of previous states and
the added cost only on the employees i in S and its current size ∣S∣. Note that
only the set S and its properties are used, not the sequence that represents a
solution. While using forward calculation, instead of the backwards formulation
of the recurrence relation, a solution ςS ?? c = ξ̌S is expanded (ςS ?? c�i) into a new
solution ςS∪{i} ?? c+c(i,t∣S∣+1) for every i ∈ E \ S. These solutions will be dominated
in their corresponding states ξS∪{i} on the value of c. Since ∣γ∣ = 1 we have
a single optimal solution for each state and the same states are evaluated as
with the backwards formulation. Naturally we start whith the empty solution
ς∅

?? 0 = ξ̌∅, and find the optimal solution ς̊ = ξ̌E .
Algorithm 1.7 A DP algorithm for the linear assignment problem
Input: Sets of tasks T = {t1, . . . , tn} and employees E = {e1, . . . , en}

A cost c(ti, ej) @ti ∈ T, ej ∈ E
Output: A sequence of employees, where ej at position i indicates that task

ti is handled by employee ej
Let ς∅

?? c be the solution with an empty sequence ⟨ ⟩ and c = C(ς) = 0
ξ̌∅ = ς∅

?? 0

for L = 0 to n − 1 do
for all S Ă E such that ∣S∣ = L do

for all ej ∈ E \ S do
if ξ̌S∪{ej} = ∅ or C(ξ̌S) + c(tL+1, ej) < C(ξ̌S∪{ej}) then

ξ̌S∪{ej} = ξ̌S�ej // = ⟨ξ̌S , ej⟩

return ξ̌E

Algorithm 1.7 describes a DP algorithm for the linear assignment problem.
The optimality principle holds as the choice expansions, the new values of all

t1 t2 t3 t4

e1 16 3 2 13
e2 9 6 7 12
e3 5 10 11 8
e4 4 15 14 1

Table 1.1: Small instance of the linear assignment problem
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state variables of all expansions depend solely on the previous state variables
S and c, and the choice of the expansion i. Note that we also use ∣S∣ which is
just a property of state variable S. The complexity of the algorithm is O(n2n),
each state is expanded to at most n new states in O(1) time and there are 2n

⟨1, 2⟩ , 22 Dominated

⟨2, 1⟩ , 12 Feasible

⟨2, 1, 3⟩ , 26 Optimal

⟨1⟩ , 16 ⟨3, 1, 2⟩ , 15

⟨1, 3⟩ , 26 ⟨3, 2, 1⟩ , 13

⟨3, 1⟩ , 8

⟨2, 1, 4⟩ , 26

⟨2⟩ , 9 ⟨2, 3⟩ , 19 ⟨4, 1, 2⟩ , 14

⟨3, 2⟩ , 11 ⟨4, 2, 1⟩ , 12 ⟨3, 2, 1, 4⟩ , 14

⟨ ⟩ , 0 ⟨4, 2, 1, 3⟩ , 20

⟨4, 3, 1, 2⟩ , 28

⟨1, 4⟩ , 31 ⟨3, 1, 4⟩ , 22 ⟨4, 2, 3, 1⟩ , 34

⟨3⟩ , 5 ⟨4, 1⟩ , 7 ⟨4, 1, 3⟩ , 18

⟨4, 3, 1⟩ , 16

⟨2, 4⟩ , 24

⟨4, 2⟩ , 10 ⟨3, 2, 4⟩ , 25

⟨4⟩ , 4 ⟨4, 2, 3⟩ , 21

⟨4, 3, 2⟩ , 21

⟨3, 4⟩ , 20

⟨4, 3⟩ , 14

ξ∅

ξ{1}

ξ{2}

ξ{3}

ξ{4}

ξ{1,2}

ξ{1,3}

ξ{2,3}

ξ{1,4}

ξ{2,4}

ξ{3,4}

ξ{1,2,3}

ξ{1,2,4}

ξ{1,3,4}

ξ{2,3,4}

ξ{1,2,3,4}

State

Figure 1.5: State space of DP for the linear assignment problem in table 1.1
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possible states, since there are 2n subsets of E. In fact a constant factor 2 may
be removed from this complexity by noticing that there are only ∣E∣− ∣S∣ possible
node to expand to and

řn
k=0(n − k)(nk) = n2n−1.

To illustrate the DP algorithm over sets we take a look at the DP state
space of a small example of the linear assignment problem, with costs as given in
table 1.1. The DP state space for this small example is depicted in figure 1.5.

1.2.2 Steiner tree in graphs
In our next example we show another advantage of the forward DP algorithm.
Sometimes it is not known in which state holds the optimal solution, this in con-
trast to for example the linear assignment problem of the previous section where
the state ξS provides the optimal solution. Furthermore, forward calculation
may be an advantage when we have infeasible solutions.

The Steiner tree problem in graphs consists of an undirected graph G = (V,E)
weight w(e) ≥ 0 for all edges e ∈ E and a subset R Ď V of required vertices [39].
The goal is to find the connected subgraph of G which includes all vertices of R
such that the total weight of all edges is minimal. Note that this graph can by
definition be reduced to a tree.

For the Steiner tree problem we create a state definition of ξS ??w where S Ď V
and w is the total weight of a tree spanning S. Every solution ςS

??w will be
a, not necessarily minimal, spanning tree of S. However, the optimal solution
ξ̌S will be the minimal spanning tree of S. A solution ςS

??w = ξ̌S (∣γ∣ = 1) is
expanded with i (ςS ??w�i) into a new solution ςS∪{i} ??w+f(S,i) for every i ∈ V \S.
Here, f(S, i) is defined as minj∈S∣e=(i,j)∈E w (e), which is the minimal weight of
any edge connecting i with S. The expanded solution ςS∪{i} ??w+f(S,i) represents
the tree represented by ςS ??w with the addition of this minimal connecting edge
and the expanded solution becomes infeasible when no such edge exists, and
it is discarded. For the backward calculation discarding infeasible solutions is
not possible, since the cost of every state used in the recurrence relation must
be known. To cope with this, infeasible solutions can be assigned a cost of ∞.
However, all states must be evaluated, even if there are no feasible solutions for
a state. The graph represented by the solutions will always represent a tree,
since the edge added by an expansion is always an edge to a new vertex. This
prevents the creation of cycles. The corresponding recurrence relation is

C (ξ̌S) = min
i∈S {C (ξ̌S\{i}) + f (S \ {i}, i)} .

Again we start with the empty solution ς∅
?? 0 = ξ̌∅. However, we do not know

beforehand which state holds the optimal solution. This is not necessarily in ξ̌V ,
since this is the minimal spanning tree of G. The optimal solution is also not in
necessarily ξ̌R. For example, when R is not necessarily connected in G, in this
case ξ̌R does not exist. The weight of the optimal solution is in this case

min
RĎSĎV

C (ξ̌S) .
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During the backward calculation we have to explore all states, i.e., finding
the minimum over all possible subsets S \ {i}. However, during the forward
calculation the expansion over non-existing edges is just skipped, we can also
stop expanding any solution ξ̌S when R Ď S.

Again all new values of the state variables of an expansion can be calculated
using the state values of the expanded solution and the vertex which is used to
expand the solution. The underlying spanning tree represented by a solution is
not used during the expansion or the test for the feasibility, the set S is sufficient
to find the minimal edge. In fact, the optimal solution ξ̌S of state ξS represents
the minimal spanning tree of S. Since the edges added in the order of Prim’s
Algorithm [98] will form a minimal spanning tree in each stage, the solution
representing a minimal spanning tree cannot be dominated in earlier stages.

Algorithm 1.8 A DP algorithm for the Steiner tree problem in graphs
Input: A graph G(V,E) with a weight w(e)@e ∈ E

A set R Ă V
Output: A sequence which describes a subset S Ě R of V such that the

minimal spanning tree of S is the minimal subtree of G containing
all vertices R

ξ̌∅ = ς∅
?? 0 = ⟨ ⟩ and ς̊ = ∅

for L = 0 to ∣V ∣ − 1 do
for all S Ă V such that ∣S∣ = L and R Ď S do

for all i ∈ V \ S do
if S ∪ {i} is connected in G then // Feasibility

if R Ď S ∪ {i} then // Test the best solution
if ς̊ = ∅ or C(ξ̌S) + f(S, i) < C (̊ς) then

ς̊ = ξ̌S�i // = ⟨ξ̌S , i⟩
else

if ξ̌S∪{i} = ∅ or C(ξ̌S) + f(S, i) < C(ξ̌S∪{i}) then
ξ̌S∪{i} = ξ̌S�i // = ⟨ξ̌S , i⟩

return ς̊

Algorithm 1.8 describes the forward DP algorithm. Again the complexity
is O(n2n) for n possible expansions for each of the 2n subsets of V . Not all
sets are expanded, since sets S Ě R are not expanded. This gives a reduction
of 2∣V ∣−∣R∣ of the 2∣V ∣ sets, which does not affect the theoretical worst-case time
complexity. The subset S of V (R Ď S Ď V ) described by the returned sequence
ς̊ is sufficient to efficiently reconstruct the minimal spanning tree of S in G. The
sequence ς̊ gives a possible order of the vertices as they could be found by Prim’s
Algorithm to construct the minimal spanning tree containing all vertices in ς̊.

In this DP algorithm there may be many states that do not have any feasible
solution.
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Figure 1.6: A small Steiner tree instance

⟨AB⟩ , 1 Dominated

⟨BA⟩ , 1 ⟨ABC⟩ , 4 Feasible

⟨A⟩ , 0 ⟨ACB⟩ , 4 Optimal

⟨BCA⟩ , 6

⟨AC⟩ , 3

⟨CA⟩ , 3

⟨B⟩ , 0 ⟨ABD⟩ , 3

⟨BDA⟩ , 3

⟨⟩ , 0 ⟨BC⟩ , 5 ⟨ABCD⟩ , 6

⟨CB⟩ , 5 ⟨BDCA⟩ , 7

⟨ACD⟩ , 7

⟨C⟩ , 0 ⟨CDA⟩ , 7

⟨BD⟩ , 2

⟨DB⟩ , 2

⟨BCD⟩ , 7

⟨D⟩ , 0 ⟨BDC⟩ , 6

⟨CD⟩ , 4 ⟨CDB⟩ , 6

⟨DC⟩ , 4

ξ∅

ξ{A}

ξ{B}

ξ{C}

ξ{D}

ξ{A,B}

ξ{A,C}

ξ{B,C}

ξ{B,D}

ξ{C,D}

ξ{A,B,C}

ξ{A,B,D}

ξ{A,C,D}

ξ{B,C,D}

ξ{A,B,C,D}

State

Figure 1.7: State space of DP for the Steiner tree in graph problem of figure 1.6
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In the forward calculation we do not notice this as there are just no solutions
feasibly expanded into those states and so they are not evaluated. During the
backward calculation this is noticed as these states are evaluated and their
solutions have a cost of ∞. Feasible solutions do not exist for a state ξS when
the vertices S are not connected in G. Since this is dependant on state variable
S, in this case it is possible to incorporate it into the recurrence relation and
the backward calculation. However, this is in general not necessarily possible.

We illustrate this DP algorithm with a small example graph of four nodes,
with nodes V = {A,B,C,D} and required vertices R = {A,D}. In the graph of
figure 1.6 the required nodes are red and the optimal solution is marked with
yellow. The DP state space for this small instance is given in figure 1.7. As soon
as the required vertices are considered no expansions are needed any more, since
its spanning tree is a Steiner tree and adding extra edges will increase the cost.
The states including the required vertices are marked blue in figure 1.7, the best
solution over all these states is the optimal solution. In this small example the
DP algorithm can be stopped after stage 4, solution ⟨ABD⟩ has value 3 and
the only solutions that can be expanded in stage 4 ⟨ABC⟩ and ⟨BDC⟩ have
already higher values. Moreover, it would be sufficient to start with just one
of the required vertices instead of all vertices, since this vertex will be in the
Steiner tree and for Prim’s Algorithm it is sufficient to start with any vertex.

1.2.3 Single machine total weighted tardiness problem
In our final example we take a look at a DP algorithm over sets which uses
multiple variables to dominate, thus ∣γ∣ > 1. For this we take a look at scheduling
tasks on a single machine. We have a set of tasks T , and for each task t ∈ T
we have a length l(t), a weight w(t), a release time r(t) and a deadline d(t),
with l(t), w(t), r(t), d(t) ∈ �0. Now we have to schedule these tasks for a single
machine in such a way that these tasks do not overlap and the total weighted
tardiness is minimized. That is, find a start time σ(t) ≥ r(t) for each task
such that the intervals (σ(t), σ(t) + l(t)) do not overlap for any two tasks andř
t∈T ∶σ(t)+l(t)>d(t) (σ(t) + l(t) − d(t)) ¨ w(t) is minimized.
For our DP algorithm we create a state definition of ξS ??w,τ , where S Ď T

are the tasks already scheduled, τ is the latest end time of all tasks in S, and
w is the total weighted tardiness. To create a recurrence relation we can only
have a single variable in γ. Since we want to minimize w, we have to move τ
to the fixed state variables φ. This results in a state definition of ξ̌S,τ and with
C (ξ̌S,τ) = w we get the recurrence relation

C (ξ̌S,τ) = min{C (ξ̌S,τ−1) ,
min{ i∈S ∣ τ−l(i)≥r(i) }{C (ξ̌S\{i},τ−l(i)) + w(t) ¨ τ − d(i) + ∣τ − d(i)∣

2 }} ,
where the rightmost part evaluates to 0 if τ < d(i) and to w(i) ¨ (τ − d(i))
otherwise.
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However, we do not know the end time of the optimal schedule so we have
to calculate C (ξ̌T,τ) for every τ to find the optimal schedule. Logically some
good estimations can be made to limit the values of τ that need to be calculated;
however, this is not the only problem. For every intermediate state ξ̌S,τ it is
unclear whether there is any feasible solution. It is possible that we have to
evaluate a lot of extra states to reach a negative conclusion. Without the release
times there are no idle times in the optimal schedule and for ξ̌S,τ we would get
τ = ř

i∈S l(i), this leads to the DP algorithm of Schrage and Baker [107]
The forward calculation finds the possible values for τ automatically. A

solution ςS ??w,τ ∈ ξ̂S is expanded with i (ςS ??w,τ�i) to ςS∪{i} ??w′,τ ′ , with τ ′ =
max{τ, r(i)} + l(i) and w′ = w + w(i) ¨ τ ′−d(i)+∣τ ′−d(i)∣

2 . Furthermore, since we
want to minimize w and a lower value of τ gives more slack, we have u = {≤, ≤},
thus γ dominates γ′ (γ u γ′) if w ≤ w′ and τ ≤ τ ′. The empty solution we start
with is ς∅

?? 0,0 as {ς∅
?? 0,0} = ξ̂∅. The optimal weighted tardiness can now be found

among the solutions ξ̂T by minς∈ξ̂T
C(ς). This is described in algorithm 1.9.

Note that the optimal solution has to be found in ξ̂T looking for the lowest
value of w, disregarding the values of τ . The algorithm has a complexity of
O(U2n2n), where U is an upper bound on the number of non-dominated solutions
in any state. One factor of U is due to extra expansions from a single state, while
another factor of U is due to a possible comparison of a new solution against

Algorithm 1.9 A DP algorithm for Single machine total weighted tardiness
scheduling problem

Input: A set tasks T
For all t ∈ T a length l(t), a weight w(t), a release time r(t) and
a deadline d(t) (to be used during the expansion)

Output: The optimal sequence in which the tasks should be scheduled

ξ̂∅ = {ς∅
?? 0,0 = ⟨ ⟩}

for L = 0 to ∣T ∣ − 1 do
for all S Ă T such that ∣S∣ = L do

for all ςS ??w,τ ∈ ξ̂S do
for all i ∈ T \ S do

ς = ςS ??w,τ�i

if ς ì ς ′,@ςi ∈ ξ̂S∪{i} then
D = { ς ′ ∈ ξ̂S∪{i} ∣ ς u ς ′ } // All solutions dominated by ς

ξ̂S∪{i} = {ς} ∪ ξ̂S∪{i} \D
ς̊ ∈ { ς ∈ ξ̂T ∣ C(ς) = min

ς∈ξ̂T

C(ς) }
return ς̊
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all other solutions in a state. When a new solution is tested for domination by
existing solutions in a state a factor U can be reduced to logU . However, when
the new solution could be added still all existing solutions in the state should
still be checked on domination by the new solution. As an upper bound we can
take U = ř

t∈T l(t)+maxt∈T r(t), since this is the total time to schedule all tasks
after the last release time, although typically just a few non-dominated solutions
exist per state.

l(t) w(t) r(t) d(t)
t1 5 4 1 8
t2 3 1 0 9
t3 5 10 2 7

Table 1.2: Small instance of a Single machine total weighted tardiness scheduling
problem

We illustrate the difference between the forward and the backward calculation
with a small example given in table 1.2. Figure 1.8 gives the state space of the
forward DP algorithm while figure 1.9 gives the state space of the backward
DP algorithm. Even for this small example we see that the forward DP uses
15 states while the backward DP uses at least 20 states, which is only reached
when some feasibility check is added to eliminate the consideration of the 56

⟨12⟩ , 0, 9 Dominated

⟨1⟩ , 0, 6 ⟨21⟩ , 0, 8 Feasible

Optimal

⟨⟩ , 0, 0 ⟨13⟩ , 40, 11

⟨2⟩ , 0, 3 ⟨31⟩ , 16, 12 ⟨132⟩ , 45, 14

⟨213⟩ , 60, 13

⟨231⟩ , 30, 13

⟨23⟩ , 10, 8 ⟨312⟩ , 22, 15

⟨3⟩ , 0, 7 ⟨32⟩ , 1, 10 ⟨321⟩ , 29, 15

ξ∅

ξ{1}

ξ{2}

ξ{3}

ξ{1,2}

ξ{1,3}

ξ{2,3}

ξ{1,2,3}

State

Figure 1.8: State space of the forward DP for the Single machine total weighted
tardiness scheduling problem of table 1.2
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infeasible states.

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
0 0 - - - - - - -

1 0 - - - - - - -

2 0 - - - - - - -

3 - 0 - - - - -

4 - 0 - - - - -

5 - 0 - - - - -

6 0 - - - - -

7 0 0 - - - -

8 0 - 10 -

9 0 - 10 -

10 1 - 1 -

11 40 -

12 16 -

13 30
14 30
15 22

Sτ

Figure 1.9: State space of the backward DP for the Single machine total weighted
tardiness scheduling problem of table 1.2
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TWO

Sequencing,
Routing and Scheduling

In this chapter we look at the classic variant of each of the three NP-hard
problems addressed in this dissertation.

• Traveling Salesman Problem

• Vehicle Routing Problem

• Job Shop Scheduling Problem

The Traveling Salesman Problem was one of the first problems solved by DP
over sets in 1962. We extend this algorithm to the Vehicle Routing Problem,
which is the extension of the Traveling Salesman Problem using multiple routes,
see also [59]. To solve the Job Shop Scheduling Problem with DP we carefully
construct multiple state variables to be able to schedule jobs over multiple
machines simultaneously, see also [60].

In the previous chapter we have seen the basic concepts of DP over sets. The
common denominator of DP over a set S is that for each subset S Ď S we want
to find the optimal solution ςS = ξ̌S for state ξS . Each solution ςS is represented
by a sequence of all nodes in S, finally leading to an optimal sequence ς̊S over
all nodes S. Furthermore, the expansion from one solution to another is done by
adding a single node at the end of the sequence.

When we have the most basic state definition of ξS ?? c, with some cost c and
no other state variables, we have a total of 2n, with n = ∣S∣, possible states,
since we have 2n possible subsets S Ď S. Each state ξS can be expanded to∣S∣ − ∣S∣ nodes which is at most n possible nodes. Assuming that each expansion,
including feasibility check and comparison with the current best of the state that
is expanded to, the DP algorithm over sets has a computational complexity of
O(n2n). This is exponentially better than evaluating all possible orders of nodes
in S, since there are n! possible sequences of all nodes in S the complexity thereof
will be O(n!). Note that the memory requirements of a DP algorithm over sets
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is also exponential, the middle stage consisting of states ξS with ∣S∣ = 1
2n has

size 2n−1, since there are 2n−1 subsets S Ă S with ∣S∣ = 1
2n. At least two stages

need to be kept in memory, so the memory requirement is O(2n).
2.1 Traveling Salesman Problem
A description of the Traveling Salesman Problem (TSP) is easily given: visit a
collection of cities exactly once using the shortest possible route, returning to
the city the route started in. More formally, given a complete graph G = (V,E)
with a distance cij for all edges eij ∈ E, find the shortest cyclic path visiting all
vertices v ∈ V . Although the TSP can be described with ease, solving an instance
of the TSP to optimality can be very hard. Currently the largest instance ever
solved has 85 900 vertices and is first solved in 2006 [4,5]. The solution proved
optimal in 2006 was already found by Helsgaun using Lin-Kernighan heuristic
in 2004, see also [8,63,64,65]. It took approximately 136 CPU-years to prove
the optimality of this solution. More information on the TSP can be found in
[78,104,61,4,34].

A solution for the TSP can start at any node s as the tour of a TSP solution
is cyclic. So we select a start vertex s ∈ V to start the TSP solution. Assume we
would use a state definition of ξS ?? c. We would have a solution that would be
the shortest path starting in s and visiting all vertices S Ď V . However, when
expanding a solution ςS = ξ̌S to a vertex i ∈ V \ S we should know the distance
cli from the last vertex l in the path to i. This depends on the last vertex of
the solution ςS which is not in the state definition ξS ?? c. To be able to use this
last vertex we should add it to the state definition, which becomes ξS,l ?? c. A
solution for state ξS,l now represents a path from s to l visiting all vertices in
S. Note that we say a path visited a vertex i if the path traveled to i, so l ∈ S
and typically s ∉ S. This means that we start our DP algorithm with state
ξ̌∅,s = ς∅,s

?? 0. Since the path starts in s, the path needs also to finish in s thus
the optimal solution ς̊ is ξ̌V,s. Furthermore, any solution in a state ξS,s with
S ≠ V is infeasible.

This results in the famous recurrence relation of Held and Karp [62] and
Bellman [17]

C (ξ̌S,i) = ⎧⎪⎪⎨⎪⎪⎩
csi if ∣S∣ = 1
minj∈S\{i} {C (ξ̌S\{i},j) + cji} otherwise.

When applying the forward evaluation of this DP algorithm every solution
ξ̌S,i is expanded to all vertices j ∈ V \S, where the expansion to s is only feasible
if V \ S = {s} to ensure we finish the path in s. This results in algorithm 2.1.

For the DP algorithm for the TSP we have added an extra state variable l to
φ, since l can take n = ∣V ∣ possible values and we have that ∣γ∣ = 1 an extra factor
n is added to the computational complexity as well as the memory requirement
given at the beginning of this chapter. These become O(n22n) and O(n2n),
respectively. This computational complexity is the best known complexity to

28



2

2.2 Vehicle Routing Problem

Algorithm 2.1 Forward DP algorithm for the TSP
Input: An instance of the TSP defined by a complete graph G = (V,E),

and a distance cij for edges eij ∈ E
Output: A sequence ς associated with an optimal route for the TSP

ξ̌∅,s = ς∅,s
?? 0 = ⟨ ⟩

for L = 0 to ∣V ∣ − 1 do
for all S Ă V such that ∣S∣ = L do

S′ = S
if S = ∅ then

S′ = {s} // Ensure ξ̌∅,s is expanded
for all i ∈ S′ such that ξ̌S,i ≠ ∅ do

for all j ∈ V \ S do
if j ≠ s or V \ S = {s} then // Feasibility: ensure we finish in s

if ξ̌S∪{j},j = ∅ or C(ξ̌S,i) + cij < C(ξ̌S∪{j},j) then
ξ̌S∪{j},j = ξ̌S,i�j // = ⟨ξ̌S,i, j⟩

return ξ̌V,s

solve the TSP to optimality. In fact, a constant factor 2 can be removed from the
memory requirement as there are at most n

2 possible end vertices when ∣S∣ = 1
2n.

From the time complexity a constant factor 4 can be removed. Notice that for∣S∣ = k we have k possible end vertices and n−k possible expansions. This results
in

řn
k=1 (k (n − k) (nk)) + 1 = 2n−2n(n − 1) + 1.

The TSP is often enriched with extra constraints such as time windows in
which a location has to be visited, these extensions will be discussed in section 4.3.

2.2 Vehicle Routing Problem
The Vehicle Routing Problem (VRP) is the extension of the TSP to multiple
salesmen or vehicles. Given a set of n customer requests R, a set of m vehicles
V , with for each vehicle vi ∈ V an origin oi ∈ O and a destination di ∈ D and a
graph G(R ∪ O ∪ D,E) with a distance cij for all edges eij ∈ E. Find routes
for each vehicle starting at its origin and finishing at its destination visiting
a set of customer requests Rvi Ď R such that the total distance is minimized
and each request r ∈ R is only to be visited by a single vehicle v ∈ V , that isŤ
vi∈V Rvi

= R and Rvi
∩ Rvj

= ∅ for i ≠ j. More information on the VRP can
be found in [76,77,116].

Originally the VRP also includes a capacity constraint for each vehicle and
a demand at each request. The problem without capacity constraints and all
origins and destinations at the same location or depot, demanding the use of m
vehicles, is called the Multiple Traveling Salesman Problem or mTSP [15]. To
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keep the distinction clear in this dissertation all problem variants with multiple
routes are called VRPs and problem variants with a single route are called TSPs.
Of course a VRP with a single vehicle becomes a TSP but also the mTSP can
be transformed into a TSP [57]. This can be done by adding m − 1 extra copies
of the depot vertex to graph G(V,E) of the TSP with the same distance for
all edges connecting to the depot vertices. To enforce the use of m routes the
distance between all depot vertices is set to ∞. Now the optimal TSP solution
for this new graph will use none of the edges with infinite length creating exactly
m routes as there are m copies of the depot which is located at the same location.
For now we look at the VRP without extra constraints, the Capacitated Vehicle
Routing Problem (CVRP) will be discussed in section 4.3.

To solve the VRP with DP we do essentially the same thing as for the
conversion of the mTSP to the TSP, we use vertices for the origin and destination
of all vehicles, stitch all routes together and solve it as a single TSP. Combining
all routes of a VRP into a single tour is introduced by Funke, Grünert, and
Irnich [49] and is called the Giant-Tour Representation (GTR) of a VRP solution.
If we order the routes of all m vehicles vi, i = 1, . . . ,m of a VRP solution, then
the GTR is a cycle in the graph G where each destination of vehicle i, vertex di,
is connected to the origin of vehicle i + 1, vertex oi+1. Finally the destination of
vehicle m, vertex dm is connected to the origin of vehicle 1, vertex o1.

In figure 2.1 we see an example of a VRP solution with four vehicles and
sixteen customers. The vehicles have their origin and destination at three
locations or depots (A, B and C), vehicle 1 (green) starts and finishes at depot
A, vehicle 2 (blue) starts at A and finishes at B, vehicle 3 (red) starts and
finishes at B and finally vehicle 4 (yellow) starts at B and finishes at C. In
figure 2.2 we see a GTR of the same VRP solution.

The cycle a GTR forms in G is a TSP solution of graph G. However, not
every TSP solution of G is necessarily a GTR of a VRP solution. When we
change the distance of all edges of destination to origin vertices to 0, cij = 0
for i ∈ D and j ∈ O, and all other edges to origin vertices or from destination
vertices to ∞, cij = ∞ for i ∉ D and j ∈ O and cij = ∞ for i ∈ D and j ∉ O,
like the conversion of mTSP to TSP, any TSP solution of G with non-infinite
distance will be a GTR of a VRP solution. The distance of this TSP solution
will be equal to the distance of the VRP solution as the distance connecting
the routes is 0. This converts a VRP into a TSP of size n + 2m, leading to a
computational complexity of O((n + 2m)2 2n+2m).

While adapting the distances in the graph to enforce TSP solutions which
are a GTR of a VRP solution is correct, it is often more practical to enforce
such constraints by feasibility checks. In the forward calculation of the TSP over
G(R ∪ O ∪ D,E) we select the destination vertex of the last vehicle dm as our
start vertex, so we start our DP algorithm with ξ̌∅,dm

, and add two feasibility
checks to our algorithm. First, any solution ςS,i ?? c can only be expanded to an
origin vertex o ∈ O if and only if the previous node i is a destination vertex,
i ∈ D. Second, any solution ςS,i ?? c can only be expanded to a destination vertex
dk ∈ D if its corresponding origin vertex is already visited ok ∈ S. This leads to
algorithm 2.2.
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Figure 2.1: An example of a VRP solution with 4 vehicles
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Figure 2.2: The GTR of the VRP solution in figure 2.1
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Algorithm 2.2 Forward DP algorithm for the VRP
Input: An instance of the VRP defined by a set of customer requests R,

and a set vehicles V with for each vehicle vi ∈ V an origin oi ∈ O
and destination di ∈ D
A Graph G = (N,E), with N = R ∪ O ∪ D and a distance cij for
all edges eij ∈ E

Output: A sequence ς associated which is the GTR an optimal solution for
the VRP

ξ̌∅,dm
= ς∅,dm

?? 0 = ⟨ ⟩
for L = 0 to ∣N ∣ − 1 do

for all S Ă N such that ∣S∣ = L do
S′ = S
if S = ∅ then

S′ = {dm} // Ensure ξ̌∅,dm
is expanded

for all i ∈ S′ such that ξ̌S,i ≠ ∅ do
for all j ∈ V \ S do

if j = dm and V \ S ≠ {dm} then
continue // Feasibility: ensure we finish in dm

if i ∈ D xor j ∈ O then
continue // Feasibility: each origin follows directly a destination

if i = dk ∈ D and ok ∉ S then
continue // Feasibility: Allow only destination of current vehicle

if ξ̌S∪{j},j = ∅ or C(ξ̌S,i) + cij < C(ξ̌S∪{j},j) then
ξ̌S∪{j},j = ξ̌S,i�m // = ⟨ξ̌S,i, j⟩

return ξ̌N,dm

Note that, it is also possible to incorporate these feasibility checks into a
backward DP algorithm. However, the recurrence relation becomes somewhat
tedious

C (ξ̌S,i) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i ∈ O and ∣S∣ = 1
min
j∈D∩S {C (ξ̌S\{i},j)} if i ∈ O and ∣S∣ > 1

min
j∈S\({i}∪D∪O) {C (ξ̌S\{i},j) + cji} if ∣S ∩ O∣ = 1 and ∣S∣ > 1

min
j∈S\({i}∪D∪ω(S)) {C (ξ̌S\{i},j) + cji} otherwise.

Here, ω(S) is the set of origin vertices oi in S, oi ∈ O ∩ S, such that the
corresponding destination vertices di are also in S, di ∈ D ∩ S.

For the VRP it is possible to fix the order of all vehicles in the GTR, this
reduces the computational complexity. In case all vehicles are identical the order
of the routes, one for each vehicle, in the GTR has no influence on the solution,
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so the order of these vehicles can be fixed a priori. For a lot of extensions of
the VRP this a priori fixation is possible even if the vehicles are not identical,
for example in capacity or depot location. However, when there are relations
between vehicles, for example a vehicle vi may only depart after the arrival of
vehicle vj , not every order of vehicles can be allowed in the GTR as the arrival
time of vehicle vj , at vertex dj , must be known before the feasibility of any
extension to oi can be performed. In fact, as long as the relations between the
vehicles are known beforehand and are not circular, a proper order of the vehicles
in the GTR can be found.

To fix the order of the vehicles in the GTR we add a constraint that vertex
di has to be followed directly by vertex oi+1, assuming the GTR is ordered
according to the index of the vehicles. Since these two vertices are adjacent in
any solution, we can merge vertices di and oi+1 into a single vertex di using the
incoming edges of di and the outgoing edges of oi+1, thereby removing the m
vertices of O from the graph G. Now the two extra feasibility checks can be
removed. However, to ensure the serial precedence relation between the merged
vertices D according to the fixed vehicle order, a new feasibility check must be
added. That is, any solution ςS,i ?? c can only be expanded to vertex dk ∈ D if
Ťk−1
i=1 di Ď S.
Since we removedm vertices, the computational complexity is already reduced

to O((n +m)2 2n+m), but the serial precedence relation of length m also reduces
the complexity by a factor 2m

m+1 , see section 4.2.1. This results in a computational
complexity of O((n +m)2

m2n) for the DP algorithm for the VRP. Note that
the complexity is O∗(2n) so it depends heavily on the number of request and
far less on the number of vehicles of the instance. Here, O∗() is defined as O()
by omitting any polynomials, see [122].

2.3 Job Shop Scheduling Problem

The Job Shop Scheduling Problem (JSSP) is similar to the problem described
in section 1.2.3. However, in the basic Job Shop Scheduling Problem (J ∣∣Cmax
[see 58]) we do not look at deadlines or weights associated with the tardiness.
In a JSSP we have N jobs that have to be processed on M dedicated machines.
Each job has a set of operations that should be processed following a specific
order, each operation must be processed by a specific machine. The time each
job requires on each machine depends on the job and on the machine and it
is assumed to be known in advance. A machine can process only one job at
the time and no job can be processed simultaneously on two or more machines.
Preemption is not allowed, meaning that when a machine starts processing a job
it should finish operating on that job before starting on another job. Note that,
different machines can run operations of different jobs in parallel. The goal is to
schedule the jobs so as to minimize the makespan, which is the maximum of their
completion times. More information on the JSSP can be found in [30,22,96].

In the rest of this dissertation we make the extra assumption that each job
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has exactly one operation to be processed on each machine. This assumption,
made to simplify the notation, is not used by the DP algorithm which can in
fact solve the general JSSP where it is allowed to have an arbitrary number of
operations for each machine. This fact is used by the DP algorithm described
in section 6.3 where maintenances are modeled as a special type of jobs. This
assumption is used in the complexity analyses where the number of machines is
used as the number of operations for all jobs.

Let J = {j1, j2, . . . , jN} denote the set ofN jobs andM = {m1,m2, . . . ,mM}
the set of M machines. Each job consists of M operations each of which
is associated with a specific machine, pmj ∈ � is the processing time of the
operation of job j ∈ J on machine m ∈ M. The sequence of operations defines
for each job the order in which the machines have to be visited and is denoted
by πj(1), . . . , πj(M), that is, for job j ∈ J , πj(i) is the i-th machine that job
j has to visit. O = {o1, o2, . . . , oNˆM} is the set of operations. The first N
operations refer to the first operation of each job (in the order of the jobs),
operations oN+1, . . . , o2N concern the second operation for each of the N jobs,
and so on. For an operation o ∈ O we denote by j(o) and m(o) the corresponding
job and machine, respectively. Note that j(oi) = i mod N . We denote by p(o)
the processing time of operation o ∈ O. Note that p(o) = pm(o)j(o). The goal is
to find a feasible schedule that minimizes the makespan.

Definition 2.1
A schedule is a function ψ ∶ OÑ �0 such that for each operation o ∈ O, ψ(o)
gives the starting time of operation o. A schedule ψ is said to be feasible if:

1. ψ(o) ≥ 0 for each o ∈ O;
2. For all ok, ol ∈ O such that j(ok) = j(ol) and k < l holds that ψ(ok) +
p(ok) ≤ ψ(ol);

3. For all ok, ol ∈ O such that k ≠ l and m(ok) = m(ol) holds that ψ(ok) +
p(ok) ≤ ψ(ol) or ψ(ol) + p(ol) ≤ ψ(ok). ◻

Similarly we define a partial schedule for a set of operations S Ă O, which can
only be feasible if for all operations in S all preceding operations of the same job
are also in S. The makespan Cmax of a schedule ψ is Cmax(ψ) = maxo∈O {Co},
where Co = ψ(o) + p(o) is the finish time of operation o. The makespan can
similarly be defined for a partial schedule with maxo∈S .

To use DP for the JSSP we want to be able to schedule each operation
separately, in order to achieve this we create a DP algorithm over all operations
O. A solution in the DP algorithm will be represented by a sequence of operations
similar to the TSP and VRP. First we limit the type of schedule we are interested
in by limiting the search to no-idle schedules. A no-idle schedule is a schedule
where no operation can be feasibly scheduled at an earlier time without changing
the order of operations on any machine. Any operation in a no-idle schedule
starts either at time 0, directly follows another operation on the same machine or
directly follows the predecessor of the same job. To be able to represent a solution
by a sequence of operations such that these operations O become the nodes of
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the DP algorithm, we need to find a way to correspond each schedule with such a
sequence and vice-versa. So we want to have a bijection between no-idle schedules
and feasible sequences. Any well defined ordering of operations according to a
schedule can create such bijection. A possible ordering could be all operations
of the first machine in the order of that machine followed by the operations on
the second machine, etc. However, to be able to determine the schedule time of
an operation at the moment of expansion of the sequence it is important that
two orders of the operations are preserved in the sequence. First for each job i
its operations (j(o) = i) must be ordered according to the order they have to be
executed. Note this order is the same order as the index of the operation for
the job are ordered, for job i its operations oi, oi+N , oi+2N , . . . , oi+(M−1)N have
to be executed in that order. Furthermore, for each machine the operations
should be ordered according to the operation order on that machine according
to schedule ψ. An example of a sequence preserving both orders is the sequence
which is ordered according to the starting time ψ(o) of each operation o. These
two properties are important as this allows us to calculate the (no-idle) starting
time of an operation o as extension of a sequence using only the starting times
of the operations preceding it in the sequence.

Each sequence which respects the first ordering automatically defines a no-
idle schedule which is a feasible solution to the Job Shop Scheduling Problem.
However, multiple sequences can define the same no-idle schedule.

When we define the sequence ς of a schedule ψ to be the operations only
ordered according to the starting time of the operations in schedule ψ, we have
no one-to-one correspondence between the schedules and sequences. A simple

machine 1

machine 2

0 10

o1

o2 o3

o4

Figure 2.3: A simple JSSP schedule with two jobs, green and blue

example with two jobs; for the schedule in figure 2.3 the sequences o1o2o3o4,
o1o2o4o3, o2o1o3o4 and o2o1o4o3 are all sorted by starting time of the operations,
and thereby preserving the ordering on each machine as well as the order of
the operations of each job. Furthermore, a sequence can be defined by several
schedules, for example the schedule of figure 2.3 with operation o4 delayed defines
the same four sequences. To define a unique sequence for every schedule we need
the limitations to no-idle schedules where there is no extra idle time, that is
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every operation is scheduled directly after the previous operation on the same
machine or directly after the previous operation of the same job. Naturally
every feasible schedule of a JSSP can be transformed in a no-idle schedule by
advancing all operations that have extra idle time.

For the DP algorithm we sort the operations of a no-idle schedule according
to the finish time of each operation, where we use the machine number as a
tie-breaker.

Proposition 2.2
For every feasible no-idle (partial) schedule for the Job Shop Scheduling
Problem there is one and only one (partial) sequence of operations defining
the schedule with the operations sorted such that:

• The completion times of the operations along the sequence are non
decreasing

• The machine numbersm(o) are increasing for two consecutive operations
with equal completion time. ◻

Proof Consider a feasible no-idle schedule for the Job Shop Scheduling Prob-
lem. A sequence of operations featuring the conditions is obtained by sorting
the operations in non-decreasing order of their completion times (ψ(o)+ p(o))
and for those that have an equal completion time, by sorting them in increas-
ing order of the machine associated with them. The total lexicographic order
imposed on this sequence guarantees uniqueness, since no two operations
with the same completion time are scheduled on the same machine. ∎

Notice that for every sequence which preserves the order of operations for each
job one feasible no-idle schedule can be found, by scheduling the operations as
soon as possible after the operations already present on its machine and after all
preceding operations of the same job. However, such a sequence is not necessarily
ordered corresponding to proposition 2.2, this leads us to the following definition.

Definition 2.3
A (partial) sequence that defines a feasible (partial) schedule is called or-
dered when it is ordered according to proposition 2.2. Otherwise it is called
unordered. ◻

For example, of the four sequences o1o2o3o4, o1o2o4o3, o2o1o3o4 and o2o1o4o3
that lead to the schedule of figure 2.3, only the sequence o1o2o4o3 is ordered.

If we limit the sequences to ordered sequences we have a bijection between
ordered sequences and no-idle schedules. Since we have a no-idle variant for
each schedule with equal or possibly lower Cmax, any optimal solution can be
represented as a no-idle schedule with the same Cmax. When we limit the search
in the DP algorithm to ordered sequences we do not disregard any no-idle optimal
solutions. The choice of sorting on the finish times of the operations will become
important later as this ensures that the finish time of the last operation in a
(partial) ordered sequence defines the Cmax of that sequence.
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Now we want to find the sequence corresponding to an optimal schedule of a
JSSP using DP over the set of all operations O. For each (partial) schedule, and
thereby for the optimal schedule, we have a corresponding ordered sequence, so
during the DP algorithm we only consider solutions which correspond to ordered
sequences as feasible. Still a simple example is enough to show that a state
definition of ξS ??Cmax

will not suffice. In figure 2.4 we see two solutions of the

m1

m2

m3

0 5

o1

o3

o6

o2

o5

o4

o9

o7

o8

a: An optimal solution
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b: A “dominating” partial solution

Figure 2.4: Two solutions of the same JSSP instance

same JSSP, the dark colors refer to the operations in a partial schedule, while
the lighter colors denote its completions. The partial solution o1o3o6o2o5 of the
optimal solution in figure 2.4a is with this state definition dominated by the
partial solution o2o3o6o1o5 of figure 2.4b, since its Cmax is lower than the partial
solution of the optimal solution. So we need extra state variables to keep the
principle of optimality.

As state variables we are going to use for each job the earliest possible finish
time of the first unscheduled operation of that job when it is scheduled in an
ordered sequence. We will first define this time for each job and then show that
using these as state variables the optimality principle holds.

Denote by ε(S) Ď O the set of operations that consist of the first operation
of each job that is not in S, and denote by λ(S) Ď S the set consisting of the last
operation in S for each job. Note that ∣ε(S)∣ ≤ N and ∣λ(S)∣ ≤ N , since there
is at most one such operation per job. Furthermore, there are N − ∣ε(S)∣ jobs
that have all operations in S, and similarly there are N − ∣λ(S)∣ jobs with no
operation in S. Any solution ςS can only be feasibly expanded to an operation
o ∈ ε(S) as any other expansion will result in the sequence corresponding to ςS
to become unordered.

For each solution ςS and each operation o ∈ ε(S) define ψ(ςS , o) as the
starting time of o in the schedule of the expansion ςS�o even if adding o
to the sequence ςS leads to an unordered sequence. Let for a solution ςS the
set η(ςS) be the set of all possible expansions ςS�o where the sequence of
this expansion is ordered, thereby rendering the expansion — within the DP
algorithm — feasible, naturally η(ςS) Ď ε(S). Let Λ(ςS) be the last operation
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in the sequence of ςS , now η(ςS) is defined by

η(ςS) = { o ∈ ε(S) ∣ ψ (ςS , o) + p(o) > Cmax(ςS) or
ψ (ςS , o) + p(o) = Cmax(ςS) ∧m(o) > m (Λ (ςS)) } .

For the first case, it follows directly that the sequence of the expansion with o is
ordered. For the second case, note that as ςS corresponds to an ordered sequence
and that m (Λ (ςS)) is the machine with the highest machine number within
the machines with eh highest completion time in the schedule of ςS . Although
the expansion with operation o has the same completion time, o has a higher
machine number so the expansion with o is also ordered.

To create a state definition in such a way that we can be sure that certain
partial solutions are in fact dominated we define an aptitude value for each
operation in o ∈ ε(S). This will eventually allow us to schedule all operations of
a dominated solution as a completion of the dominating solution.

Definition 2.4
We define an ‘aptitude’ value for a solution ςS and each operation o ∈ ε(S)
as

α(ςS , o) = ⎧⎪⎪⎨⎪⎪⎩
ψ(ςS , o) + p(o), if o ∈ η(S)
Cmax(ςS) + p(o), otherwise. ◻

This aptitude value α(ςS , o) represents the earliest completion time of operation
o in any ordered completion ςO of ςS . For the first case, when o ∈ η(S), ςS can
directly feasible be expanded with o, α(ςS , o) is directly defined as the completion
time of o in the expansion ςS�o. For the second case, when o ∉ η(S), the
sequence of the expansion ςS�o is not ordered. This means that neither the
completion time of machine m(o) nor the completion time of the operation
preceding o in the job j(o) is limiting the start time of o in ςO such that is able
to be completed at or before Cmax(ςS). Since ςO is ordered, there has to be
another operation o′ ∉ S with m(o′) = m(o) which precedes o in the sequence of
any completion ςO. For completion time of o′ in the schedule ψςO we have that
ψςO(o′) + p(o′) ≥ Cmax(ςS), now the earliest completion time Cmax(ςS) + p(o)
for o follows directly.

In order to clarify the previous concepts, we consider the instance of the
JSSP that was introduced in figure 2.4. In particular, for this instance, consider
a partial solution ςS with sequence o1 o3 o6 o2 o4, which leads to the schedule
depicted in figure 2.5a. In this case we have Cmax(ςS) = 6, S = {o1, o2, o3, o4, o6},
ε(S) = {o5, o7, o9}, λ(S) = {o2, o4, o6} and η(ςS) = {o7, o9}. Taking into account
that p(o5) = 1, p(o7) = 1 and p(o9) = 3 we obtain (see figure 2.5b): ψ(ςS , o5) = 4,
ψ(ςS , o7) = 6, ψ(ςS , o9) = 4, α(ςS , o5) = 7, α(ςS , o7) = 7, α(ςS , o9) = 7. Note
that the expansion ςS�o5 is not regarded as feasible within the DP algorithm
as o5 ∉ η(ςS) and therefore will not lead to an ordered expansion.

Let ~α(ςS) be the array of α(ςS , o) for all o ∈ ε(S) ordered according to j(o),
and let ~α be the single element Cmax when ε(S) = ∅ (thus S = O). Notice that∣~α(ςS)∣ = ∣ε(S)∣ ≤ N and that for each job at most one operation is represented
in ~α, this ensures that for a single S the same operations are represented in the
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Figure 2.5: Illustration of the values ψ(ςS , o) and α(ςS , o) for o ∈ ε(S)
same order in ~α. Furthermore, let ~η(ςS) be the array of η(ςS , o) representing the
same operations o ∈ ε(S) in the same ordering as ~α, where η(ςS , o) is defined as

η(ςS , o) = ⎧⎪⎪⎨⎪⎪⎩
1, if o ∈ η(ςS)
0, otherwise.

Note that each job is represented in ~α and ~η at a distinct location regardless of
the current operation in ε(S), this location is removed when all operations of a
job are scheduled.

The aptitudes ~α(ςS) gives us the completion times of the expansion of ςS
with any operation in ε(S), and the array ~η(ςS) specifies whether the expansion
with such an operation is ordered. These to vectors give us the instrument to
define a correct domination and a state definition which provides the principle
of optimality. Before we create this state definition we show some important
properties of ~α and ~η. For the array ~α we define u in a similar way as for γ, using ≤
for each element-wise compare. That is ~α(ς1S) u ~α(ς2S) when α(ς1S , o) ≤ α(ς2S , o)
for all o ∈ ε(S).

Proposition 2.5
When ~α(ς1S) u ~α(ς2S) any operation in O \ S of any ordered completion ς2O of
ς2S can be scheduled at the same time in the schedule of ς1S . This leads to a
feasible possibly no-idle schedule of the JSSP with a makespan of Cmax(ς2O).◻
Proof For all operations o ∈ ε(S) we have that α(ς1S , o) ≤ α(ς2S , o), so that
any expansion of ς2S can be scheduled either at the same time as or earlier
than the expansion of ς1S . Thus, all operations o ∈ ε(S) can be scheduled at
the same time in ς1S as they are scheduled in ς2O. Note that for the completion
time of such an operation the following holds:

ψ(ς2O, o) + p(o) ≥ α(ς2S , o) ≥ α(ς1S , o) ≥ Cmax(ς1S).
Any other operation can as well be scheduled at the same time as they can only
be scheduled when any preceding operation of the same job is finished. Since
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this includes an operation in ε(S) each of the operations in O \ (S ∪ ε(S))
has a predecessor in ε(S) and can thereby only start at a time later than
Cmax(ς1S). ∎

Note that the last argument of the preceding proof shows why we need the
ordering on finish times of the sequences.

We use a small example to clarify this idea. When we take a look at figure 2.6
the partial solution o2o3o6o1o5 in figure 2.6a is dominated by the partial solution
o2o3o5o1o6 in figure 2.6b, since the aptitude values for o4 and o9 are equal and
the aptitude value for o8 is lower for the partial solution in figure 2.6b. We can
also see that the completion o9o8o4o7 of o2o3o6o1o5 in figure 2.6a can be added
in the schedule of o2o3o5o1o6 see figure 2.6b.
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pansion of figure 2.6a is added

Figure 2.6: The completion of one schedule is added in another schedule

However, such a schedule constructed by completing a partial schedule with
the completion of another partial schedule can be no-idle. In figure 2.6b operation
o8 is idle and can be moved forward (together with operations o4 and o7). This
will possibly also result in a change in the order of the operations. In figure 2.6b
the completion would become o8o9o4o7 instead of the original o9o8o4o7.

In fact, it could be possible that creating a no-idle schedule from such a
schedule would move one or more operations of the completion of the dominated
schedule before the last operation of the dominating schedule according to the
order of the resulting sequence. In figure 2.6 this would be the case if operation
o1 would have length 3, see figure 2.7. When this is the case, the completion
of the dominated solution cannot be scheduled as an ordered completion of the
dominating solution. This is where ~η is needed, we see that in that case the
values of η would differ for o8 for the two schedules in figure 2.6.

Proposition 2.6
When ~η(ς1S) = ~η(ς2S) for the two solutions in proposition 2.5 the sequence
of the no-idle schedule created from the schedule starting with ς1S with a
completion of ς2S added starts with the sequence of ς1S . ◻
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Proof Proposition 2.5 ensures that the schedule is feasible. Any operation
o ∈ ε(S) \ η(ς1S) (η(ς1S , o) = 0) cannot be scheduled as an ordered expansion
of ς1S . For o to be scheduled such that the resulting completion starts with
ς1S , another operation should be scheduled in the completion on the same
machine m(o) before o can be scheduled in any ordered sequence. The fact
that also η(ς2S , o) = 0 ensures that such an operation is planned in any ordered
completion of ς2S . ∎
When we add ~α and ~η to the state definition we can create a DP algorithm

for which the principle of optimality holds. We add ~η to the fixed variables
of the state definition leading to φ = (S, ~η), and use ~α as the comparable part
of the state definition, thus γ = ~α. For ~α we define u similar to γ using ≤ for
each element-wise compare. So for two solutions ςS,~η ?? ~α and ς ′

S,~η
?? ~α′ we have

ςS,~η
?? ~α u ς ′

S,~η
?? ~α′ when all values of ~α are less or equal to their corresponding

values in ~α′ (~α u ~α′).

Proposition 2.7
For the state definition ξS,~η ?? ~α the optimality principle holds. ◻
Proof For the optimality principle to hold, first all state variables of an
expansion must follow directly from the expanded solution and the choice of
the expansion. When we have an expansion ς ′ = ςS,~η ?? ~α�oi, this expansion
is only feasible if oi ∈ η(S) Ď ε(S). This can be directly deduced from the
value of ~η for the corresponding job j(oi). When the expansion is feasible
the completion time of oi in ς ′ is ψ(ςS,~η ?? ~α, oi) + p(oi) = α(ςS,~η ?? ~α, oi) and is
equal to the value of ~α for j(oi). Note that Cmax(ς ′) = α(ςS,~η ?? ~α, oi), and
that ε(S ∪ {oi}) = ε(S) \ {oi} ∪ {oi+N}, where oi+N is only added if oi is not
the last operation of job j(oi). So the operations represented in ~α and ~η stay
the same, except oi+N is represented instead of oi (or the representation of
j(oi) is removed when oi is the last operation of this job).

For the expansion ς ′
S′,~η′ ?? ~α′ we have that S′ = S ∪ {oi}, ~η ′ = ~η but its

value corresponding to oi+N (η(ς ′, oi+N)) is set to 1, and the value is set
to 0 for all operations in o ∈ ε(S′) that cannot be expanded as an ordered
sequence anymore. That is if α(ς, o) < Cmax(ς ′) or α(ς, o) = Cmax(ς ′) and
m(o) ≤ m(oi). The values for ~α′ are equal to ~α except for all operations
o ∈ ε(S′) where η(ς ′, o) = 0 or m(o) = m(oi) and for oi+N these are set to
Cmax(ς ′) + p(o). Note that all these values are available from the previous
state or are deduced earlier. So all new state variables of an expansion follow
directly from the previous state and the choice (operation) of the expansion.

Finally, for the optimality principle to hold, when we have two solutions
ςS,~η

?? ~α and ς ′
S,~η

?? ~α′ in the same state ξS,~η and ςS,~η ?? ~α u ς ′
S,~η

?? ~α′ (~α u ~α′), all
feasible expansions and completions of ς ′ must be dominated by the same
expansion made to ς. Since ~η is equal for both solutions, exactly the same
operations give a feasible expansion. For the completion time ψ(ς ′, o) of
any expansion with o of ς ′ we have that ψ(ς, o) ≤ ψ(ς ′, o), as ~α u ~α′. We
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have not necessarily that ~η ˚ = ~η ′˚. So for the expansions ς˚ and ς ′˚ of ς
and ς ′, respectively, we have that ~α˚ u ~α′˚ except for the operations where
η ˚(ς˚, o) ≠ ~η ′˚(ς ′˚, o).

So the expansion of ς may not dominate the expansion of ς ′ directly. When
we look at a completion ς ′

O of ς ′, the operations of this completion can be
scheduled at exactly the same times after ς, leading to a feasible (possibly
idle) schedule ψ. This schedule can be converted to a no-idle schedule ψ˚ with
an equal or lower completion time. The ordered sequence corresponding to
ψ˚ starts with the sequence of ς as for ς and ς ′ had equal ~η, for all operations
o ∈ ε(S)\η(ς) another operation has to be scheduled before o on the machine
m(o) before o can be scheduled in the completion of ς ′. This prevents the
completion time of any operation to advance before Cmax(ς) in the conversion
from ψ to ψ˚. So any completion of ς ′ is dominated by a completion of ς. ∎

Since proposition 2.5 does not use the values of ~η this result is independent of
the fact that ~η = ~η ′ as used in propositions 2.6 and 2.7. When we have two
solutions ςS,~η ?? ~α and ς ′

S,~η′ ?? ~α′ for which we have ~α u ~α′ and ~η ≠ ~η ′, according
to proposition 2.5 we have that the operations of any completion ς ′

O of ς ′ can
be scheduled at the same times after ς leading again to a schedule ψ. When
we convert this again to a no-idle schedule ψ˚ the corresponding sequence does
not have to start with the same sequence as ς, since it may be the case that in
the sequence corresponding to ψ˚ operations of the completion are scheduled
before operations from ς. However, this ensures a solution with equal or better
makespan as ς ′

O does exist.
This suggests that we can leave ~η out of the state definition, as used in

proposition 2.7, although ς ′ is not directly dominated by ς, ς ′ is dominated by
some solution somewhere in the state space. ς ′ is not directly dominated by ς
because it may be possible that for some completions of ς, that can be made
by adding the best possible completions of ς ′ to ς, the sequences are unordered.
The ordered sequences belonging to such a schedule do not start with ς, as is
showed in figure 2.7.

Because ~η is used in the calculation of the state variables, we have to prove
that there is at least one optimal solution that is not dominated in any stage. To
not remove ~η entirely from the state definition we introduce a new set of state
variables next to φ and γ. We define β as the set of bookkeeping variables needed
in the calculation of all state variables but not used to divide the state space into
states (φ) or compare solutions within a state (γ). So we define β = (~η). In the
state definition we divide the variables of φ and β with

77 . The state definition for
the DP algorithm for the JSSP now becomes ξS ?? ~α

77 ~η. Theoretically this could
reduce the complexity of the algorithm by a factor 2N , as the theoretical number
of states is reduced for all possible values of ~η to 1. However, in practice this
factor will be less, since typically not all possible states are created. Further
complexity analysis can be found at the end of this section. When bookkeeping
variables β are used, an extra proof is needed to prove that an optimal solution
is found. Before we can prove this we first have to make a couple of observations.
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Figure 2.7: Operation o8 of a completion is scheduled before the last operation
of the dominating sequence

The state definition ξS ?? ~α
77 ~η allows for indirect domination, even of optimal

solutions. Let ς1O be a complete solution, and let ς1O be a completion of a partial
solution ς1 (ς1

S
?? ~α1 77 ~η1) that is dominated during the DP algorithm. Then there

is a solution ς2 (ς2
S

?? ~α2 77 ~η2) with the same operations and ~α2 u ~α1. According to
proposition 2.5 we can add the operations O \ S of any completion of ς1 (also
the one leading to ς1O) to the schedule of ς2 at exactly the same times as they
were scheduled in the extension of ς1 (to possibly ς1O). From such, possibly idle,
schedule — starting with ς2 and adding the operations O\S at the time they are
scheduled in ς1 — we create a no-idle schedule ψ2, by advancing all operations as
much as possible. Obviously, such schedule represented by sequence ς2O, will have
a makespan equal or lower than the original solution ς1O which is a completion
of ς1. We say ς2O is the solution welded from the partial solution ς2 and the
completion of ς1 to ς1O.

We can categorize all completions ς1O of ς1 with respect to the domination
by ς2 into two cases based in the solution ς2O welded from ς2 and the completion
of ς1 to ς1O:

I. The welded sequence ς2O starts with the sequence represented by the partial
solution ς2. This implies that the completion of partial solution ς1 to
solution ς1O can be scheduled as an ordered, no-idle, completion of partial
solution ς2. For all completions of this type we have a partial solution,
namely ς2, which can be expanded to a solution with equal or lower
makespan. We call this direct domination.

II. The welded sequence ς2O does not start with the sequence represented by
the partial solution ς2. This implies that at least one operation o ∈ O \ S
in schedule ψ2 is advanced so that this operation occurs in the ordered
sequence before the last operation Λ(ς2) of the sequence represented by ς2.
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This implies that α(ς2, o) = Cmax(ς2) + p(o) as otherwise the expansion of
o could be done in an ordered way. This actually ensures that for each
completion of ς1 there can be another solution welded from ς2 and this
completion with equal or lower makespan. We call this indirect domination.

When we have indirect domination (case II.) we can deduce some special proper-
ties.

Proposition 2.8
If we have indirect domination between ς1 and ς2 as described in case II.,
there is at least an operation o ∈ O\S that is scheduled in the welded solution
ς2O such that o is finished in ς2O before it is scheduled to start in ς1O. ◻
Proof Since we have indirect domination, there is at least one operation o
that is scheduled in ς2O before Λ(ς2). As operation o could not be scheduled
as expansion of ς2 leading to an ordered schedule we have the following

ψ(ς1O, o) + p(o) ≥ α(ς1S , o) ≥ α(ς2S , o) = Cmax(ς2S) + p(o).
From this we can conclude that

ψ(ς1O, o) ≥ Cmax(ς2S) = ψ(ς2O,Λ(ς2)) + p(Λ(ς2)) ≥ ψ(ς2O, o) + p(o). ∎

Corollary 2.9
Operation o of proposition 2.8 can be scheduled twice in ς2O with a makespan
that is either equal to or less than that of ς1O. ◻
Proof On one hand, operation o of proposition 2.8 can be scheduled after
Cmax(ς2S). On the other hand, it can be scheduled in the ordered sequence
such that is finished before Cmax(ς2S). Therefore operation o can be scheduled
twice consecutively in ς2O. ∎

This effect can be seen in figure 2.7, when operation o8 is also scheduled at time
5 in figure 2.7b the completion will be scheduled at exactly the same times as
they are scheduled in figure 2.7a.

We have seen that all operations of a completion of a dominated solution can
be scheduled at the same time, or earlier, in the schedule of a dominating solution.
We can also deduce another important property of domination, which considers
not the operations individually but the location within the sequence. For this
we denote by ς[i] the i-th operation of the solution ς, that is the operation at
index i in the sequence of ς. Recall that Co denotes the finish time of operation
o. To prevent any ambiguity we extend this to Co(ς) to denote the finish time
of operation o in solution ς.

Proposition 2.10
Let partial solution ς1S of solution ς1O be dominated in stage i = ∣S∣ by solution
ς2S . Let ς2O be the solution welded from the completion of ς1S to ς1O and ς2S .
Then we have that for any j > i = ∣S∣ that Cς2

O
[j](ς2O) ≤ Cς1

O
[j](ς1O). ◻
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Proof When the completion from ς1O to ς1S is scheduled (possibly idle) at the
times of ς1O after ς2S , the proposition trivially holds. When this schedule is
converted to a no-idle schedule, operations are only moved forward. If this
conversion is done in unit steps at the time, it is easy to see that the condition
holds after each step. When an operation is moved forward by 1 without
changing the order of operations, the proposition naturally holds. When two
operations must be switched to keep the ordering, they have the same finish
time just before the second operation is moved forward. This means that the
order of the operations can be changed without changing the finish time at
any index. So at each index j > i the finish time can only decrease. ∎

We have seen that domination with a state definition ξS ?? ~α
77 ~η allows for indirect

domination. When a partial solution ς1
S

?? ~α1 77 ~η1 is dominated by ς2
S

?? ~α2 77 ~η2 we have
the guarantee that for each completion ς1O another (welded) solution ς2O with
equal or lower makespan exists, however, we do not yet have the guarantee that
such a solution is found. It is possible that a dominating solution ς2

S
?? ~α2 77 ~η2 did

not have an ordered completion with equal or lower makespan as ς1O. To show
that we cannot dominate all optimal solutions we need the following proposition.

Proposition 2.11
Let ς1O be a solution and let its partial solution ς1S be dominated indirectly by
ς2S in stage i = ∣S∣. Let ς2O be the solution welded from ς2S and the expansion
of ς1S to ς1O. For k ≥ 2, let ςkSk

be a partial solution of ςkO that is directly
or indirectly dominated by a partial solution ςk+1

Sk
. Let ςk+1

O be the solution
welded from ςk+1

Sk
and the expansion from ςkSk

to ςkO. When all dominations
occur at or before stage i, thus ∣Sk ∣ ≤ i, we have ςkO ≠ ς1O for all welded
solutions k ≥ 2. ◻
Proof Since ς2S dominates ς1S indirectly there exists an operation o ∈ O \ S
that is scheduled in ς2O before the last operation Λ(ς2S). This operation o is
scheduled in ς1O such that ψ(ς1O, o) ≥ CΛ(ς2

S
)(ς2S). First we conclude that the

index of Λ(ς2S) is at least i+ 1 in ς2O. Using proposition 2.10 and the fact that
all dominations occur before stage i + 1 we conclude that for all solutions ςkO
with k ≥ 2 we have for operation ςkO[i + 1] that Cςk

O
[i+1](ςkO) ≤ CΛ(ς2

S
)(ς2O).

When Co(ςkO) ≤ CΛ(ς2
S
)(ς2O) we can conclude that Co(ςk+1

O ) ≤ CΛ(ς2
S
)(ς2O).

When o ∉ Sk this follows directly from the domination and when o ∈ Sk this
follows from the fact that we have an ordered sequence, ∣Sk ∣ ≤ i and that
Cςk

O
[i+1](ςkO) ≤ CΛ(ς2

S
)(ς2O). So in all solutions ςkO with k ≥ 2 we have that

operation o finishes before it even starts in ς1O, and therefore ςkO ≠ ς1O. ∎
Such chain of dominated solutions leads to the following corollary.

Corollary 2.12
When partial solution ς1S of solution ς1O is dominated in the DP algorithm
before the last stage in stage i = ∣S∣ (i < ∣O∣) there exists a partial solution in
stage i + 1 with a completion with a makespan no larger than that of ς1O. ◻
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Proof If the completion to ς1O of ς1S is dominated directly by a partial solution
ς2S this solution is expanded. So one of its expanded partial solutions in stage
i + 1 must have a completion that has a makespan no larger than that of
ς1O. If ς2S dominates ς1S indirectly, proposition 2.11 shows that there exists no
chain of welded solutions dominated at stages before i + 1 such that any of
the welded solutions is ς1O. Since there exist a limited number of solutions,
only a cycle of domination between such welded solutions can prevent the
existence of a partial solution in stage i + 1. With only direct domination it
is clear that no cycle exists, since the domination itself prevents domination
in a later stage. With indirect domination we can apply proposition 2.11
at each indirect domination preserving the property of the previous indirect
dominations which prevent that one of the previous dominated solutions is
found as dominating solution.

Suppose such a cycle of domination between welded solutions with indirect,
and possibly direct, domination exists. Let t be the largest stage in which
domination occurs in this cycle. Then domination in stage t must by definition
be indirect, since otherwise we would have a partial solution in stage t + 1 in
the cycle. Proposition 2.11 directly gives a contradiction to the existence of
this cycle. So no such cycle exists and this chain of welded solutions must
lead to a partial solution not dominated in at least stage i + 1. ∎

With these ingredients we can prove the optimality of definition ξS ?? ~α
77 ~η, which

allows for more domination compared to the original state definition ξS,~η ?? ~α.

Proposition 2.13
Using state definition ξS ?? ~α

77 ~η leads to an optimal DP algorithm for the JSSP.◻
Proof Suppose an optimal solution ς̊1O is dominated, then there is a partial
solution ς̊1S of ς̊1O that is dominated in stage i = ∣S∣ by another partial solution
ς2S . If i < ∣O∣ corollary 2.12 provides a partial solution in stage i + 1 with an
optimal completion. Using this iteratively this provides an optimal solution
in stage ∣O∣ where it can only be dominated directly by another optimal
solution. So the DP algorithm with state definition ξS

?? ~α
77 ~η provides an

optimal solution. ∎
The algorithm using state definition ξS

?? ~α
77 ~η is described in algorithm 2.3.

In contrast to algorithm 1.9 the optimal solution can directly be taken from
ξ̂O as it has just a single element. This can be derived from the fact that ~η
is a zero-dimensional vector for S = O and the special definition of ~α in this
case. The complexity analysis is a bit more complicated for this algorithm.
Straightforward calculation of the complexity would give O(U(U +N)MN2MN),
consisting of: U as an upper bound for the number of non-dominated solutions
in any state ξ̂S , MN possible expansions for each solution and 2MN possible
subsets of O. Finally, the factor U +N is the effort for each expansion, N for
the calculation of the new state variables ~α and ~η, and U for updating the new
state. However, every solution ςS can only be feasibly expanded to the next
operation of each job, thus o ∈ η(S) Ď ε(S) and ∣ε(S)∣ ≤ N losing a factor M .
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Algorithm 2.3 Forward DP algorithm for the JSSP
Input: An instance of the JSSP defined by a set of operations O, with

for each operation a machine m(o) and a processing time p(o)
Output: The ordered sequence corresponding to an optimal solution

ξ̂∅ = {ς∅
??~0

77~0 = ⟨ ⟩}
for L = 0 to ∣O∣ − 1 do

for all S Ă O such that ∣S∣ = L do
for all ςS ?? ~α

77 ~η ∈ ξ̂S do
for all o ∈ ε(S) do

if η(ςS ?? ~α
77 ~η, o) = 1 then // Feasibility: expansion is ordered

ς = ςS ?? ~α
77 ~η�o

if ς ì ς ′,@ςi ∈ ξ̂S∪{i} then
D = { ς ′ ∈ ξ̂S∪{i} ∣ ς u ς ′ } // All solutions dominated by ς

ξ̂S∪{i} = {ς} ∪ ξ̂S∪{i} \D
ς̊ ∈ ξ̂O
return ς̊

Furthermore, we have N precedence relations of length M for the order of the
operations in each job, this removes a factor ( 2M

M+1)N in the possible subsets of
O for which the state has feasible solutions, see section 4.2.1. These reductions
lead to a complexity of O(U(U +N)N(M + 1)N).

To estimate U = maxSĂO ∣ξ̂S ∣ we first conclude that the values for Cmax(ςS ?? ~α)
are limited for any solution ςS ?? ~α ∈ ξ̂S . The values of ~α for any solution ς are by
definition in the interval [Cmax(ς), Cmax(ς) + pmax], where pmax = maxo∈O p(o).
Let now ςS

?? ~α be such that Cmax(ςS ?? ~α) = minς∈ξ̂S
Cmax(ς), since α(ςS ?? ~α, o) ≤

Cmax(ςS ?? ~α) + pmax we conclude that any solution ς ′
S

?? ~α with Cmax(ς ′
S

?? ~α) ≥
Cmax(ςS ?? ~α) + pmax is dominated by ςS ?? ~α and thus ς ′

S
?? ~α ∉ ξ̂S . So Cmax(ς) for

ς ∈ ξ̂S can have at most pmax different values. By definition two solutions in
ςS

?? ~α, ς
′
S

?? ~α′ ∈ ξ̂S do not have equal aptitude values (~α ≠ ~α′). So for each value of
Cmax we have at most (1 + pmax)N different solutions, this leads to the following
estimate: U ≤ pmax(1 + pmax)N .

To improve this bound we look at the maximum number of possible values
of ~α for solutions with the same Cmax that do not allow for any domination. For
all solutions ς ∈ ξ̂S with Cmax(ς) = c conclude that 0 ≤ α(ς, o) − c ≤ pmax for all
o ∈ ε(S) (all values of ~α). Each aptitude vector ~α can be represented by a subset
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of the multiset S = k1, . . . , kN , with ki = pmax for i = 1, . . . , N . S consists of
ki = pmax copies of N different elements xi, i = 1, . . . , N , where xi is associated
with job i. Denote by σ(ς) the subset associated with the aptitude of ς. Thus,
σ(ς) Ď S is composed by taking @o ∈ ε(S), α(ς, o)− c copies of xi where i = j(o).
Now observe that for ς, ς ′ ∈ ξ̂S , with Cmax(ς) = c = Cmax(ς ′), ς t ς ′ if and only if
σ(ς) Ď σ(ς ′) with σ(ς) = σ(ς ′) when ς ≐ ς ′. We conclude that @ς, ς ′ ∈ ξ̂S , with
Cmax(ς) = c = Cmax(ς ′), we have σ(ς) Ď σ(ς ′) and σ(ς) Ě σ(ς ′).

Intermezzo: Antichains

Before proceeding with our analysis, we recall the concept of an antichain,
see Anderson [3, chaps. 4.3 & 9.4] for further details and proofs.

Definition 2.14
An Antichain is a collection of subsets of a set where no two elements
of the collection are subsets of each other. ◻
Proposition 2.15
The largest antichain in the collection of all subsets of a multiset is
smaller or equal to the largest rank number Ni (Ni the number of
elements with rank, or size, i). ◻
Proposition 2.16
The size of the largest rank number for a multiset is equal to size of
the middle-rank number λ which is

Nλ « ( 2
π
) 1

2

ś
i

(ki + 1)√
1
3

ř
i

ki(ki + 2) . ◻

According to the definition of an antichain the sets σ(ς) for ς ∈ ξ̂S and Cmax(ς) = c
form an antichain of S. Since we have ki = pmax for all i, the maximum size
of such antichain is approximately ( 2

π
) 1

2 (pmax+1)N√
1
3N(pmax2+2pmax) . As we have pmax of

these antichains, one for every possible value of Cmax(ς), we conclude that

U ≤ pmax ( 2
π
) 1

2 (pmax + 1)N√
1
3N(pmax2 + 2pmax) = O⎛⎝ pmax

N+1√
Npmax2

⎞⎠ = O(pmax
N√

N
) .

From this we can obtain an upper bound on the total time complexity of the
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DP algorithm for the JSSP

O(pmax
N√

N
(pmax

N√
N

+N)N(M + 1)N)
O((pmax

2N

N
+ Npmax

N√
N

)N(M + 1)N)
O((pmax

2N +N√
Npmax

N) (M + 1)N)
O(pmax

2N(M + 1)N) .

Although the upper bound U = O(pmax
N√

N
) gives a complexity of

O(pmax
2N(M + 1)N) ,

experimental results suggest that the actual value is just a small part of this
bound, see section 5.2.1
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THREE

The Dynamic Programming
State Space

Before we continue with the classical problems introduced in the previous chapter
and their variants in the next chapters,we take a better look at the DP state
space in general. To improve the performance we can add bounding such that
the size of the state space of a DP algorithm can be reduced while preserving
optimality. This works in a similar way as in Branch and Bound as was first
done by Marsten and Morin [82]. In section 3.2 we show how to alter the state
space definition in such a way that known optimal solutions can be disregarded
enabling new optimal solutions to be found. We show that using this strategy
iteratively, including newly found solutions in each iteration, eventually will
produce all optimal solutions. Finally, we investigate possibilities to modify the
optimal DP algorithm into a heuristic such that practical running times can be
achieved.

3.1 Dynamic bounding
To improve the performance of a DP algorithm we can add bounding to each
state of the DP algorithm. This was first suggested for the TSP and other
sequencing problems by Marsten and Morin [82] and later used by Carraway and
Schmidt [27], Dyer, Riha, and Walker [41] and Puchinger and Stuckey [99] for
other combinatorial problems. This can be done very similarly to the well-known
principle of Branch and Bound. However, the effects of bounding on a DP state
space can be very different from the effects on a Branch and Bound algorithm.

As in Branch and Bound, we try to find an upper bound UB on the problem’s
value and construct a lower bound LB(ςS) for any completion of each partial
solution ςS . Naturally, this lower bound is also a lower bound for all possible
expansions and completions of ςS . So if LB(ςS) > UB we can prune the state
space of DP by discarding the partial solution ςS as soon as it is created.
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This saves the possibly exponential effort of considering all expansions of ςS .
Nevertheless, such bounding in a DP state space can have negative running
time performance influences as well, since such bounds need to be calculated.
This is analogous to Branch and Bound. However, in contrast to a Branch and
Bound tree where a pruned node has no effect on the other nodes evolved from
an earlier branch, in a DP state space removing a node can have effect on other
parts of the state space as well.

To illustrate this we show an example in figure 3.1. Consider two solutions

ς1S\i

ς2S\j

ς3S\j

ς2S

ς1S

ς3S

ξS\i

ξS\j

ξS

a: ς1
S dominates ς2

S and ς3
S

ς1S\i

ς2S\j

ς3S\j

ς2S

ς3S

ξS\i

ξS\j

ξS

b: ς1
S is not created

Figure 3.1: Possible negative effect of bounding

ς2S\j and ς3S\j in state ξS\j that do not dominate each other (Naturally, since we
have multiple solutions in a state, we have some γ for these states and solutions,
which is disregarded as it is besides this observation irrelevant). Consider their
expansions, with j, to ς2S and ς3S , respectively, in state ξS , where these solutions
still do not dominate each other. Assume that ς2S and ς3S are dominated in ξS
by ς1S , which is an expansion of ς1S\i in ξS\i with i, after which only expansions
of ς1S are considered. When ς1S\i is bounded, LB(ς1S\i) > UB, the expansion ς1S
is not created and ς2S as well as ς3S are not dominated. Now all the expansions
of both ς2S and ς3S are considered, which is potentially much more effort. The
difference in respect to Branch and Bound is that the DP state space forms a
directed acyclic graph in contrast to the tree formed by Branch and Bound.

Naturally, the expansions of ς2S and ς3S should not be considered, since
LB(ς1S) ≥ LB(ς1S\i) > UB and ς1S u ς2S , ς3S , there should be lower bounds LB(ς2S),
LB(ς3S) such that LB(ς1S) ≤ LB(ς2S),LB(ς3S). To prevent this possible negative
effect, this principle gives us the only requirement for the lower bound — except
that it is indeed a lower bound for all completions — when ς1 u ς2 we should
find bounds such that LB(ς1) ≤ LB(ς2). In the previous example we would have
that ς2S would be bounded because LB(ς2S) ≥ LB(ς1S) ≥ LB(ς1S\i) > UB, similarly
ς3S would be bounded.
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3.2 Finding all optimal solutions with DP

The simplest way to assure this property for a lower bound is to create a lower
bound that only depends on the state variables, φ and γ, such that variables in
γ in the direction of increasing dominance have a decreasing effect on the lower
bound. So when u = {≤, ≤}, the two variables in γ dominate for lower values
so decreasing these values should have a decreasing effect on the lower bound.
Of course, not all variables of φ and γ have to be used in the calculation of a
a lower bound. Furthermore, the dependance of the lower bound on the state
variables has only to be theoretical, performance can in some occasions greatly
benefit from extra intermediate variables for solutions.

Notice that such a lower bound for solutions is not necessarily a bound on
states. If a lower bound depends on variables in γ, different solutions in the
same state can have different lower bounds.

The size of the DP state space can be reduced with bounding which can
improve the performance of a DP algorithm as it is likely that less states have to
be evaluated. However, the total performance will depend on the performance
of calculation of a lower bound and on possible effects as explained above. As
section 5.2.3 shows, dynamic bounding can be very effective.

3.2 Finding all optimal solutions with DP
Some problems have multiple optimal solutions, for example any symmetric
TSP (with n > 2) has at least two optimal solutions as any optimal solution can
also be traveled in the opposite direction. Also JSSP instances have typically
multiple solutions as operations that are not on the critical path can often be
swapped. A DP algorithm typically finds only a single solution. When two
(partial) solutions are equal only one is regarded as not dominated, so even if
there are multiple equal solutions in the last stage (symmetric TSP) only one is
found. However, just keeping equal partial solutions will not always be sufficient
to find all optimal solutions. Within the state space for the JSSP full domination
can occur between two partial solutions which both have an optimal completion.
Also effort can be wasted when equal solutions, that have no optimal completion,
are both kept.

Proposition 3.1
To find optimal solutions other than the ones already known we can run the
original DP algorithm while preventing domination by partial solutions for
which optimal completions are known. ◻
Proof We first observe that for any optimal solution ς̊ not found by the
original DP algorithm some partial solution ς that can be completed to ς̊
must be dominated by some other partial solution ς ′ in some stage k. From
the very nature that an optimal solution is dominated we can conclude that
the partial solution ς ′ dominating ς must have at least one optimal completion
ς̊ ′. If ς̊ ′ is also not found by the DP algorithm it must be dominated by an
other partial solution ς ′′ in some stage l with l > k, which in turn must have
an optimal completion ς̊ ′′. Following these optimal solutions with dominated
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partial solutions will finally lead to the optimal solution found by the DP
algorithm. A circular relation of dominating optimal solutions is impossible,
since these dominations occur in strictly increasing stages of the original DP
state space. Similar to the reasoning in the proof of corollary 2.12 domination
must occur in different stages of the state space. For example, if a circular
domination between three solutions occurs in stages a < b < c, the domination
in stage b would not be possible, since the dominating solution would itself
already be dominated in stage a.

Since none of the not yet found optimal solutions can be dominated by
partial solutions of already found optimal solutions, at least one of the not
yet found optimal solutions has to be found. ∎
To incorporate this in an original DP algorithm we first number all found

optimal solutions with a unique identifier, for simplicity we assume the optimal
solutions are simply numbered increasingly by the order they are found. To
the original DP algorithm we add a new variable Ω to φ in the state definition
leading to a state definition of ξS,Ω ??γ (originally φ = {S}). We define Ω as a
set of identifiers of optimal solutions which can be completed with the current
partial solution. The algorithm starts with an empty set S and the identifiers of
all optimal solutions in Ω.

The recurrence relation depends of course on the recurrence relation of the
original DP. The following relation expresses the recurrence relation regarding
Ω, a solution state with a non empty Ω can only be an extension of a partial
solution from the same optimal solution(s). This solution is only feasible if the
current extension is indeed the extension leading to the optimal solutions in Ω.

C (ξ̌S,Ω) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
i∈S {C (ξ̌S\{i},Ω′�i)} if Ω = ∅
C (ξ̌S\{i},Ω′�i) otherwise, where Ω Ď Ω′ and i the

correct extension for the solutions in Ω

Figure 3.2 shows the effect of Ω on the state space. In figure 3.2a we have no
optimal solutions and in figure 3.2b the dominating solution is optimal. Adding
Ωto the state definition isolates solution “1” in its own state.

Proposition 3.2
Adding Ω to the state definitions maintains the optimality principle and
prevents any domination by partial solutions of known optimal solutions ◻
Proof Since all found optimal sequences are known before we perform the
DP algorithm, we can find for each expansion ςS,Ω ??γ�i the new set Ω′ by
taking identifers of optimal solutions that are identified by Ω and where i
is at position ∣S∣ + 1 in the optimal sequence. This addition to the state
definition maintains the optimality principle, since the new values of Ω for
an expansion can be derived from the original state variables and the choice
of the expansion.

Also the addition of Ω prevents any domination by partial solutions of
optimal solutions as they are singled out by this state definition. An identifier
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b: ς2
S is not dominated anymore

Figure 3.2: The effect of Ω in the state space

of an optimal solution will only occur in Ω of a single solution in each stage,
preventing any domination by this partial solution. We conclude that this
state definition allows only domination between partial solution for which no
optimal completion is known and Ω = ∅. ∎

Now all optimal solutions can be found by running the DP algorithm with Ω in
the state definition iteratively until no new optimal solutions are found.

To show the effect of Ω on a total state space we use a small example of
the linear assignment problem. In figure 3.3 the DP state space for the linear
assignment problem specified in table 3.1 is given. The found optimal solution
we call A and figure 3.4 gives the new DP state space resulting in the second
optimal solution.

A sketch of the algorithm for finding all optimal solutions is given in algo-
rithm 3.1, where DPΩ(Σ) is an original DP algorithm altered by adding Ω to
φ in the state definition. It takes a set of optimal solutions Σ to be assigned
identifiers and used in Ω. It returns a set of found optimal solutions. To speed up
this algorithm the original DP algorithm can be altered slightly to find multiple
optimal solutions in a single run. This can be done by altering the definition of
ξ̂ slightly allowing for multiple solutions with ς ≐ ς ′. When there was a single

t1 t2 t3 t4

e1 5 7 2 11
e2 3 2 11 1
e3 3 5 9 9
e4 9 11 3 9

Table 3.1: Instance of the linear assignment problem
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Figure 3.3: State space of DP for the linear assignment problem in table 3.1
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Figure 3.4: State space of DP for the linear assignment problem in table 3.1
with ⟨1, 3, 4, 2⟩ as optimal solution A
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Algorithm 3.1 Iterative algorithm to find all optimal solutions using DP
Input: Equal to the original DP algorithm
Output: All optimal solutions of the original problem

Σ = ∅
repeat

Σ′ = DPΩ(Σ)
Σ′ = Σ′ \ Σ
Σ = Σ ∪ Σ′

until Σ′ = ∅
return Σ

optimal solution per state in the original DP algorithm (ξ̌), multiple solutions
with the same minimum (or maximum) are allowed.

The complexity of this algorithm is mostly determined by the complexity of
the original DP algorithm and the number of times this algorithm is performed.
This depends on the number of new solutions found in each iteration of DPΩ(Σ),
but is bounded by the number of found optimal solutions f = ∣Σ∣. The alterations
to the original DP algorithm normally have no effect on the complexity. The
number of states in the state space is maximally increased by nf , where f is the
number of optimal solutions and n = ∣S∣ is the number of nodes the original DP
algorithm is performed on. This is easy to see as each known optimal solution
has a single state for each stage in the DP state space, multiple optimal solutions
having the same partial solution in the beginning share such states. Note that all
Ω of states of a single stage are disjoint and that their union is equal to all known
optimal solutions. As we now have nf + 2n instead of 2n states we could write
O(DPΩ) = O(DP ) + nf

2n O(DP ). As long as the number of optimal solutions is
not exponential, this is largely dominated by the exponential number of states
resulting from the subsets of S.

Furthermore, the number of solutions per state is increased by keeping multiple
solutions with ς ≐ ς ′. As we take a bound of f for the number of times the
original DP algorithm has to be performed, we disregard this speedup also in
the complexity of the original DP algorithm. Only having many solutions with
equal dominance values would dramatically decrease the running time of the
original DP algorithm, in this case we generally expect also a lot of optimal
solutions. In the worst-case scenario — where all partial solutions per state are
equal, and thus all solutions are optimal — adding this speed-up would result
in a brute-force algorithm enumerating all solutions. However, not using this
speedup would result in performing the original DP algorithm once for each of
these solutions. All in all the effort of finding all optimal solutions is at most
the effort of the original DP algorithm for each found solution, thus fO(DP).

If there is sufficient memory, the performance can be improved by keeping
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the complete state space in memory and after each iteration the partial solutions
of the newly found optimal solutions could be removed from their corresponding
states. For partial solutions in a state with Ω ≠ ∅ this would result in replacing
the original state containing a single solution with a new state where the new
identifier is added to Ω. For partial solutions in states with Ω = ∅ this would
result in the removal of the partial solution from the state, which is placed
into its own state where Ω contains the identifier of the new optimal solution.
The domination for the remaining state ξ̌, or ξ̂ depending on the original DP
algorithm, should be reevaluated. The DP algorithm can now be performed by
only expanding ξ̌, or new non-dominated solutions in ξ̂, and their expansions.
Note that, these expansions can belong to already existing states, in this case ξ̌,
or ξ̂, have to be reevaluated and any new solution ξ̌, or in ξ̂, should be expanded.
This prevents the reevaluation of the same expansions in each iteration of the
original DP algorithm. However, to accommodate for the reevaluation of ξ̂, or
ξ̌, all solutions in ξ have to be kept in memory. Once dominated solutions can
become non-dominated when the solution dominating it turns out to have an
optimal completion.

Note that for the second DP state definition in section 2.3 the addition of Ω
to the state definition is not sufficient to be able to find all optimal solutions.
The addition of the bookkeeping variables β allows for indirect domination. With
indirect domination we allow a partial solution of an optimal solution to be
dominated by a partial solution possibly without an optimal completion, if it
can be guaranteed that another partial solution with optimal completion would
dominate this partial solution. Finding all optimal solutions with this state
definition is described in section 5.3.

3.3 Heuristic DP algorithms
The running time of an optimal DP algorithm over sets is often impractical as it
is often exponential. To reduce the running time the optimal DP algorithm can
be converted into a heuristic algorithm. This section describes basic ways to do
this which can be used simultaneously.

3.3.1 Removing state variables
To reduce the size of the state space, variables can be left out of the state
definition. For example for the Traveling Salesman Problem with Time Windows
(TSPTW) when minimizing on distance d we have an optimal state definition of
ξS,l

??d,t, see section 4.3.6 for a description on time-windows.
To reduce the number of solutions expanded each state we can remove the

time from the state definition and change the state definition to ξS,l ??d. The
number of states is not changed but the number of non-dominated solutions per
state is reduced, in this case to at most one.

This technique has similarities with state space relaxation using surrogates
of state variables as in Christofides, Mingozzi, and Toth [33]. However, there are
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also some fundamental differences. State space relaxation yields lower bounds
since feasibility is not pursued and optimality is enforced in the relaxed problem.
Our removal of state variables leads to a heuristic framework producing upper
bounds.

We can directly see that the state definition ξS,l
??d is not optimal as the

feasibility cannot be checked on state variables. Since the DP algorithm minimizes
the distance, with state definition ξS,l ??d the waiting time in solutions is ignored.
This makes it possible that the optimal solution is not found. It is even possible
that no feasible solution is found when feasible solutions exist.

To illustrate this we take a look at a small example with five nodes, where
node 1 is the depot. The time traveled is taken equal to the distance.

Distance Time Window Service Time
1 2 3 4 5

1 - 1 5 20 20 0-100 0
2 20 - 1 5 20 50- 60 5
3 20 5 - 1 20 40- 70 5
4 20 20 20 - 1 50-100 5
5 1 20 20 20 - 60- 71 5

Table 3.2: Small instance of the TSP with Time Windows

Obviously, solution ⟨2, 3, 4, 5, 1⟩, with distance 5, is optimal in distance.
However, it is not feasible as the visit at node 5 would occur at time (68, 73).
Solution ⟨3, 2, 4, 5, 1⟩ with distance 17 is feasible, with a visit at time (66, 71) at
node 5. The state definition ξS,l ??d would miss the optimal solution as at state
ξ{2,3,4},4 solution ⟨2, 3, 4⟩ would dominate solution ⟨3, 2, 4⟩.

A better option to create a heuristic would be using state definition ξS,l ?? t
and minimize on the time. Since distance and time have a large correlation — for
traveling they are even equal for this instance — minimizing on time would also
minimize the distance as a side effect. Minimizing on time does take the waiting
time into account and at state ξ{2,3,4},4, solution ⟨3, 2, 4⟩ would now dominate
solution ⟨2, 3, 4⟩. Naturally this is still a heuristic, and setting the time window
at node 5 to [60, 75] would make solution ⟨2, 3, 4, 5, 1⟩ feasible, but it would not
be found. Even setting the distance from node 1 to node 3 to 41 would still
result in finding solution ⟨3, 2, 4, 5, 1⟩, now with distance 58.

Often multiple state variables have a large correlation, removing some of
them will result in a heuristic which when done carefully can still find good
solutions.

3.3.2 Limiting the number of expansions
Another way of limiting the number of evaluated partial solutions is limiting the
number of expansions for each non-dominated solution. For each non-dominated
solution we limit the number of expansions by stopping after finding E feasible
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expansions. To find the most promising expansions, all possible nodes to expand
need to be sorted before performing the actual expansions. This limitation is
similar to beam search (Bisiani [19]). However, beam search is applied to the
solution space, whereas we use a limitation on the search through the state space.

For the TSP and VRP the possible expansions could be sorted in increasing
order of the distances from the last node in the sequence. For the TSP and VRP
this limitation of the number of expansions is reasonable, because edges in the
optimal solution will most likely be between two nodes that are near neighbors
of each other, as observed by Rego and Glover [102] and Toth and Vigo [115].
For the JSSP the operations to be expanded could be sorted in decreasing order
of their tail. However, for the JSSP the number of feasible expansions is already
limited to N of the NM possible operations, since per job at most one expansion
will be feasible.

This limitation basically reduces a single factor in the complexity to a constant
E. For example, the factors n, n +m and N are reduced for the TSP, VRP and
JSSP, respectively. The effect of this limitation can be that some states will not
contain any feasible solution. Since the number of feasible partial solutions in
the following state is at most multiplied by E, the number of feasible partial
solutions evaluated will be maximized at Es for stage s. The total number of
feasible partial solutions evaluated will be at most 2E ∣S∣ for any E > 1. The
extreme case E = 1 will result in a nearest-neighbor for the TSP. The sorting of
possible expansions can often be done as preprocessing, for example for the TSP
per node all other nodes can be sorted by distance, otherwise a factor log(E)
will be added to the complexity.

Another way to limit the number of expansions is to use an a-priori measure
to include or exclude an expansion. For example, for the TSP and VRP the
distance between two nodes can be used. This would mean we would only expand
to nodes which are at most a certain distance from the last node. Naturally, a
combination of these two, where a minimal number of expansions is also set,
would also be possible. A downside of this strategy is that the complexity of
this algorithm is possibly equal to the complexity original DP algorithm.

3.3.3 Limiting the number of solutions to expand
Similar to limiting the number of expansions for each solution, the number
of solutions to be expanded can be limited, as proposed by Malandraki and
Dial [81]. If we limit the number of solutions expanded from each stage to H the
computational complexity of the algorithm can be bounded by a polynomial. We
call H the width of the stage space. Each stage at most H will be expanded to
at most all n = ∣S∣ nodes resulting in at most nH new solutions of which at most
H will be expanded. Naturally, we need to decide which solutions to expand,
for this we choose the H most promising solutions. How the most promising
solutions are determined depends greatly on the characteristics of the problem,
and the variables already calculated for each solution. However, the solutions
always have to be sorted according to these criteria adding, when using tree sort,
a factor log(H) to the computational complexity. When using the current cost
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of a solution as sorting criterion for H is used DP naturally tends to get too
greedy in the first part of the solutions. For the TSP, using this criterion, setting
H = 1 will again result in a nearest-neighbor. When using dynamic bounding
(section 3.1) the current bound of a solution is a more stable criterion as it also
considers nodes not yet in the partial solution. In sections 4.1, 5.2 and 6.6 we
will go into further detail of selecting the most promising solutions.

Setting H to a higher value can decrease the solution quality. As more
partial solutions are found the partial solution of the current best solution can
be left unexpanded. To illustrate this, we use the instance of a linear assignment
problem given in table 3.3. The current cost of a partial solution will be used

t1 t2 t3 t4

e1 2 7 2 11
e2 3 2 11 1
e3 3 5 9 9
e4 9 11 3 9

Table 3.3: Instance of the linear assignment problem

as criterion to bound the partial solutions of a single stage. The total DP state
space for this instance is given in figure 3.5. This is all similar to the example
used in section 1.2.1, with different costs. When H is set to H = 1 only solutions⟨ ⟩, ⟨1⟩, ⟨2⟩, ⟨3⟩, ⟨4⟩, ⟨1, 2⟩, ⟨1, 3⟩, ⟨1, 4⟩, ⟨1, 2, 3⟩, ⟨1, 2, 4⟩, ⟨1, 2, 4, 3⟩ are created
of which only the underlined solutions are expanded. The final solution ⟨1, 2, 4, 3⟩
has cost 16. When H is set to H = 2 the optimal solution is found. Figure 3.6
depicts the state space of DP with H = 2, all partial solutions of the original
state space are shown. The purple solutions are abandoned, not expanded, due
to the limitation to the width H, the grey solutions are not created in this state
space.

When H is set to the higher value H = 3 again solution ⟨1, 2, 4, 3⟩ is found,
as can be seen in figure 3.7. The partial solution ⟨1, 3, 4⟩ is abandoned since
partial solutions ⟨3, 2, 1⟩, ⟨1, 2, 4⟩ and ⟨3, 2, 4⟩ all have a lower cost.

Although a higher value for width H results in evaluating more partial
solutions, as long as the stage width is still limitative, it is possible that this
abandons the best solution found by a more limitative stage width. The same
principle applies to bound E, which bounds the number of expansions per partial
solution, as described in the previous section.

3.3.4 Heuristic bounding
When a bounding described in section 3.1 is applied, the used bound for a
partial solution must be a lower bound on all possible completions of this partial
solution. The calculation of such a bound, sufficient enough to limit the size of
the state space, can be difficult or too expensive to achieve a good performance.
Possibly, a quick estimation can be used to achieve an estimated value for the
optimal completion instead of a valid lower bound. When this value is used
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Figure 3.5: State space of DP for the linear assignment problem in table 3.3
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Figure 3.6: State space of DP for the linear assignment problem in table 3.3,
with H = 2
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Figure 3.7: State space of DP for the linear assignment problem in table 3.3,
with H = 3
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to bound solutions, possibly good solutions can be considered bounded when
this value turns out to be invalid as lower bound. If this estimate is sufficiently
accurate it can be used to bound bad solutions, possibly using a slightly higher
upper bound to prevent bounding good solutions with an incorrect estimated
completion. Also, when bounding the number of solutions to be expanded by
width H, this estimation of their best completion can be used to select the best
H partial solutions to be expanded in each stage.
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In this chapter we take a closer look at the Vehicle Routing Problem. First, we
focus on the effects of bounding on the DP algorithm. To show these effects we
use computational results on well-known CVRP instances. Second, we look at
general effects of some basic properties of different VRP variants. Third, we show
how to incorporate a large variety of different extensions of the VRP optimally
into the VRP algorithm. Finally, we show how the DP algorithm can be used as
a pricing instrument for solving rich VRPs by column generation.

4.1 Dynamic bounding for the VRP
To demonstrate the effects of bounding we tested DP on 109 instances the
Capacitated Vehicle Routing Problem, see section 4.3.2. For each partial solution
we calculated a lower bound on the cost of any possible completion. We ran DP
with very limited state spaces to show what such state space with bounding can
achieve.

We used sets A, B and P from Augerat [9], sets E, F, M from Christofides and
Eilon [31], Fisher [45] and Christofides, Mingozzi, and Toth [32]. Furthermore,
one large instance G-n262-k25 from Gillett and Johnson [52] and converted
TSPLIB [103] instances. All instances can be downloaded at [101].

To create an estimate on the cost of the best completion of each partial
solution we used the Linear Programming (LP) relaxation, with added flow
inequalities, of the Two-Commodity Network Flow Formulation of Baldacci,
Hadjiconstantinou, and Mingozzi [12], where we fixed all edges already decided
in the partial solution. Using the result of the LP we obtain a lower bound on
the cost of any completion for each partial solution. Using this estimate on the
completion we can eliminate any partial solution with an estimated completion
above a given upper bound for the cost of the optimal solution. While this
may eliminate some partial solutions, the greatest effect of the estimate on
the completion cost is that this estimate can be used to determine the partial
solutions that are to be expanded to the following stage, when the number of
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expanded solutions is limited by stage width H. The partial solutions chosen to
be expanded we determined by selecting the H solutions with the lowest estimate
on the total cost of any completion. Also, the number of feasible expansions
from each node we bounded by E. All expansions to unvisited nodes are created
in order of increasing order of the distances from the last node in the partial
solution until E feasible expansions are found.

We ran DP for 109 instances 4 times with increasing values for the state
space limitations using the cost of the previously found solution minus 1 as an
upper bound. Also, the following runs are skipped when a solution with a known
optimal value is obtained, since optimality cannot be proven with a pruned state
space. Note that, repeating DP with an improved upper bound has limited
effects on the resulting solution. As the quality of the estimated completion
cost is not affected by the given upper bound, the only effect of a better upper
bound on the outcome of the DP algorithm is the pruning of partial solutions for
which the estimated completion cost becomes higher than the given upper bound.
Typically, this estimate exceeds the given bound for small (i.e., including a small
number of visited nodes) partial solutions only on very bad partial solutions,
which typically do not belong to the partial solutions with the H best estimated
completion costs. For larger partial solutions this can happen more frequently,
thereby increasing a possibility of finding a better solution. However, increasing
the size of the state space is much more effective.

We ran the following combinations for H and E: {H = 10, E = 10}, {H =
25, E = 25}, {H = 50, E = 25}, {H = 75, E = 25}. As we want to show the effect
of bounding on the DP state space we report only the running time without
the running cost used for bounding. The time reported is between 2 − 15% of
the total running time. In fact, for 80% of the runs the calculation of the LP
solutions take 90 − 95% of the run time, in total it takes 94.4% of the total
running time of all runs. The times reported contain also the time taken for
keeping the basis and fixed variables of the LP solutions to be able to hot start
the calculation of each LP for consecutive partial solutions, that is a sequence of
partial solutions each being an expansion of the previous partial solution. Since
the calculation of each LP takes a considerate amount of running time this is
not the best way to achieve a lower bound but we use it to show the effects of
bounding. Part of this remaining running time is used to keep track of all LP
related variables for each partial solution.

If we look at figure 4.1 which depicts the gap of the found solutions with the
best known solutions we see that for more than 20%, 23, of the 109 instances an
optimal solution is found. We also see that for 35% of the instances a solution is
found within 1% of the best known solution, and 60% within 2%. For more than
90% of the instance we found solutions within 5% of the best known solution
and for all instances we found a solution within 10% of the best known solution.

A more detailed overview of these runs can be found in table A.1 on
pages 126–129 in appendix A. Also, the specifics of the machine and LP solver
used to obtain these results can be found in appendix A.
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Figure 4.1: The gap with the best known solution for the 109 instances

4.2 Properties of the Vehicle Routing Problem
In this section we describe the effects of general properties of the VRP and TSP
that are common on some variants. The precedence relations in section 4.2.1 can
be the result of special constraints or just due to the possibilities of symmetry
reduction given by a homogenous fleet as described in section 4.2.3. The symmetry
described in section 4.2.2 applies mainly to the pure TSP and is of a more
theoretical value for the VRP.

4.2.1 Precedence relations
For some problems there exist precedence relations between nodes i, j in the set
V such that node i should be before node j in any feasible solution ς defined
by a sequence of nodes. Such relations can have a significant impact on the
running time of the DP algorithm over the set V . For any precedence relation
the feasibility of an expansion can easily be checked, since all predecessors of
the expanding node should be in the set S of nodes already in the solution. In
this section we find the reduction of complexity of a DP algorithm over a set V
when there exist different sets of precedence relations.

For the basic VRP, with homogeneous vehicles and no relations between the
different customers, the order of the different vehicles in the GTR is irrelevant.
The order of the vehicles can thus be chosen in advance. This can be modeled
by adding precedence relations between the nodes, representing the start and
the end of each vehicle, as briefly mentioned in section 2.2. Note that, this does
not completely eliminate symmetry, since even with this precedence relations
two equal solutions to the VRP can still have a different representation in the
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GTR, as the routes of two identical vehicles can be swapped.
Let us start with the simplest precedence relation, that of just two nodes.

As an example we can think of a GTR consisting of a single vehicle, where we
have the precedence relation between the start at the depot and the finish at
the depot of that vehicle. Let nodes a, b ∈ V and let a ≺ b, that is node a has to
precede node b is any sequence that represents a feasible solution. For the DP
state space this means that for the total set of nodes V with n = ∣V ∣ we have
that for each subset S Ă V with b ∈ S and a ∉ S there exist no feasible solution.
As there are

řn−1
k=1 (n−2

k−1) = 2n−2 of such subsets, 1
4 of all possible subsets does not

have any feasible solution. This reduces the time complexity of the DP algorithm
by a factor of 4

3 .
Let us now consider a sequential precedence relation a1 ≺ a2 ≺ . . . ≺ am,

which is typical for the precedence relation between the start/end nodes of the
vehicles in the GTR. To count the subsets S Ă V which can hold feasible
partial solutions, we first look at the number of such subsets of size k, i.e.,∣S∣ = k. Such subset is only feasible when it contains only the first l nodes of the
precedence relation, for a l ≥ 0. The number of such subsets for a given k and l,{ a1, a2, . . . al } Ă S and { al+1, al+2, . . . am } ∩ S = ∅, is equal to (n−m

k−l ). When we
sum this over the complete state space we get

řm
l=0

řn−m+l
k=l (n−m

k−l ) = (m+ 1)2n−m
states that can possibly hold a feasible partial solution. If we divide this by
the total number of subsets 2n we get that a fraction of (m+1)2n−m

2n = m+1
2m of all

subsets can possibly hold feasible partial solutions. So the complexity is reduced
by a factor 2m

m+1 for each sequential precedence relation of length m. This result
also can be achieved quickly by the following observation. Let P =∪mi=1 {ai} and
let R = V \ P . Then the precedence relation has no effect on nodes in R so
all possible 2∣R∣ = 2n−m subsets are feasible. For P we only have m + 1 feasible
subsets that are of the form ∪ki=1 {ai} for k = 0, 1, . . . ,m. Since each feasible
subset S is a union of a feasible subset of P and any subset of R, the number of
feasible subsets (m + 1)2n−m, and the fraction m+1

2m , follows directly. In general
the reduction by a related set of predecessors P is f(P )

2∣P ∣ where f(P ) are the
number of feasible subsets of P .

With this observation we have to find f(P ) for each set of related predecessors
to find the reduction of that set of predecessors. First we take a look at a few
straightforward sets of predecessors before constructing a general expression for
f(P ). Let the set of predecessors be P = { a, b, c }, and let a ≺ b and a ≺ c. For
a ∉ S we have only the empty set as a feasible subset of P and for a ∈ S we can
have all 22 possibilities for b and c. Thus, the DP state space is reduced by a
factor 8

5 . Similar arguments for a ≺ c and b ≺ c leads to the same factor.
For P = { a, b, c, d } with a ≺ b ≺ d and a ≺ c ≺ d we get that for d ∈ S

P Ď S, for b and c we have again all 4 possibilities given a ∈ S, when a ∉ S
P ∩ S = ∅. This leads to a reduction by a factor 24

6 .
In general we can group all nodes with exactly the same predecessors and

successors, in the previous example nodes b and c could be grouped. With a
sequence of precedences indirect predecessors may be removed from the set of
predecessors, so if a ≺ b ≺ c node a would not be considered as a predecessor of
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node c. For such a group of size g all
řg
k=0 (g

k
) = 2g possibilities are valid as soon

as all predecessors are already in set S. When one of the predecessors is not in
set S only a single possibility is feasible, i.e., no element of the group is in S.

Let a set of connected predecessors P be divided in q distinct groups of
predecessors P1, P2, . . . , Pq, P = Ťq

i=1 Pi and Pi ∩ Pj = ∅ if i ≠ j, such that each
element in a group Pi has equal predecessors and successors. By the definition of
the groups all precedence relations in P can be expressed by precedence relations
between the groups, denoted by Pi ≺ Pj . Let the size of a group be defined
by gi = ∣Pi∣ and let hi Ă { 1, 2, . . . , q } be the set of indices j such that Pj ≺ Pi.
Now the total number of feasible subsets of P can be calculated by a series of
sums. For each group Pi we have

gi
ś

j∈hi
δgj kjÿ

ki=0
(gi
ki

)
where ki defines the index of summation for the summation belonging to group
Pi and δgjkj is the Kronecker delta which is defined to be 1 when gj = kj and
0 otherwise. The product

ś
j∈hi

δgjkj evaluates to 1 when all predecessors are
selected and it evaluates to 0 otherwise. The summations need of course be
ordered so that all summations belonging to a predecessor occur earlier in the
series, otherwise kj would not be defined.

Let us look at a small example. Let the set of 15 connected predecessors
P be divided into 5 groups, P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 with sizes 1, 2, 3, 4, 5,
respectively. Let the precedences between these groups be P5 ≺ P2 ≺ P4,
P5 ≺ P3 ≺ P4 and P3 ≺ P1, see figure 4.2.

P1

P2

P3

P4

P5

Figure 4.2: The precedence relations in P

Then the total number of feasible subsets of P becomes:
5ÿ

k5=0

2δ5k5ÿ

k2=0

3δ5k5ÿ

k3=0

4δ2k2δ3k3ÿ

k4=0

δ3k3ÿ

k1=0
( 5
k5

) ( 2
k2

) ( 3
k3

) ( 4
k4

) ( 1
k1

) = 97.
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So, given the size ∣P ∣ = 215 of P , the precedence relations defined in P give a
reduction by a factor 215

97 .

4.2.2 Symmetric distance matrix
For the pure TSP with a symmetric distance matrix the computation time of
the DP algorithm can be halved by a simple observation [see 40, chap. 5.3.]. In
stage n

2 two states with partial solutions ξS,i ?? c and ξS′,i
?? c′ both of half a tour

can be combined to a full tour with cost c + c′ when they are disjunct except for
i, S ∩ S′ = i, and the union is equal to V except the start node s, S ∪ S′ = V \ s.
Both tours form a route from the start node s to node i, together they cover
all nodes without visiting any node twice. As the distance matrix is symmetric,
each edge can be reversed with the same cost. Now one of the routes can be
traversed from i to s in the opposite direction, with the same cost, forming a
feasible solution to the TSP. Since both sub-routes are optimal, the resulting
tour is the optimal tour which starts with S ending in i before visiting the rest
of the nodes S′. All these combinations of partial solutions of stages

X
n
2

\
andP

n
2

T
form all possible combinations of S,S′ and i with ∣S∣ = X

n
2

\
and ∣S′∣ = P

n
2

T
.

For the symmetric VRP with no extra constraints the same principle holds.
However, as typically the nodes belonging to the start and end of each vehicle
are in a fixed order in the GTR the comparison of S and S′ should be done
only in the non-depot nodes and when i is a depot node the connection can
be made with any similar depot node. This reduction for the VRP is mostly
of theoretical value as the solution of a pure VRP reduces to a TSP solution
unless the distance matrix is non-euclidian and it is beneficial to visit the depot
multiple times. Since most constraints break the symmetry, the principle fails to
hold when such a constraint is added.

4.2.3 Symmetry in the GTR
For a homogeneous vehicle fleet different GTR representations can correspond
to identical VRP solutions. For example, the GTR where vehicle v1 visits only
request r and the route of vehicle v2 remains empty is identical to the GTR where
vehicle v2 visits request r and vehicle v1 remains empty. To reduce this symmetry
we can add an extra constraint on the partial solution. Before expanding to
the i-th destination node, at least

Q
i∣R∣
m

U
request nodes should be in the partial

solution, and for that matter in S. This enforces a non-increasing number of
visited request nodes in the consecutive vehicles. For a heterogeneous vehicle
fleet the same principle can be applied for each range of identical vehicles. To be
able to test the feasibility for these solutions extra bookkeeping variables may be
needed in the state definition, e.g., the number of customers in the last identical
vehicle. We can impose these constraints as this symmetric solution should also
be present in the DP state space as long as it is non-dominated. When other
constraints are added other more practical tie-breaking constraints to reduce the
symmetry can be added, such as a similar fraction of the total demand.
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The running time implications of these constraints are hard to quantify as
they not necessarily eliminate states, only with certainty eliminate expansions.
Furthermore, for the VRP other beneficial effects can occur in the state space
when adding constraints. For example, when the number of request nodes per
vehicle are limited by a constraint, such as a capacity constraint, certain states
will not contain any feasible solution. For instance, a state where S contains
almost all customer nodes and has still the first vehicle as current vehicle will
seldom contain a feasible solution. This effect depends heavily on the instance
that is to be solved, however, in most instances of the VRP it will have some
effect.

4.3 Variants of the Vehicle Routing Problem
In this section we describe a range of variants of the VRP. For various constraints
of the VRP we describe how the DP algorithm can be changed to solve the VRP
variant with this constraint optimally and what the complexity implications can
be for the DP algorithm. These constraints can apply in similar way to the TSP,
when such constraint can be applied to a single vehicle.

In general, extra constraints can be incorporated by adding extra state
variables which, in general, have negative impact on the performance. In the
worst case this even can lead to a brute force algorithm, when every solution
is the sole solution of its state. We will see that for some constraints no state
variables need to be added and even that constraints can have a positive impact
on the performance when the reduction in feasible solutions can be incorporated
in the existing DP algorithm in a natural way.

When the DP algorithm is converted into a heuristic, the state variables
added in this section are typically the variables that are removed as described in
section 3.3.1.

4.3.1 Heterogeneous vehicles
For the VRP it is possible that certain vehicles have different characteristics.
The most common reasons for heterogeneity are capacity and travel speed as we
will see in sections 4.3.2 and 4.3.6. However, the simplest form of a heterogeneous
vehicle fleet is a constraint which forbids for a customer to be visited by certain
vehicles. A few practical examples of this constraint are frozen goods that may
only be transported by vehicles equipped with a refrigerator, a certificate needed
by the driver of the vehicle, for example to transport hazardous goods, or the
availability of a crane on the vehicle. Another simple example of a heterogenous
vehicle fleet are different origin and destination locations for each vehicle. Also,
the Open-VRP, vehicles do not have to return to the depot, can be modeled by
setting the destination location at distance 0 from each origin and request node.
The same principle holds for the Closed-Open-VRP where only the distance to
the destination nodes from the “Open” vehicles is set to 0. To be able to handle
such constraints we can use the same state space definition.
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From the set S we can deduce the current vehicle in the GTR, as this is the
only vehicle for which the origin node is in set S while the destination node
is not in set S. Even when the order of the vehicles is fixed, and pairs of the
destination node and the origin node of two consecutive vehicles are merged
into a single node, the current vehicle can be found, this can be done by finding
what is the latest of such nodes in S. This can easily be found as they should be
added to S according to their fixed precedence relation.

This constraint has a favorable effect on the running time of the DP algorithm,
as certain expansions are forbidden and states ξS,i where i may not be loaded
into the current vehicle defined by S cannot hold feasible solutions. However,
the number of states that are actually removed by this constraint depends on the
instance. Even if we take the effort in calculating the number of sets S for which
state ξS,i has no feasible solutions, it is very likely that the effect described in
the second paragraph of section 4.2.3 will have a higher impact on the running
time of the algorithm.

4.3.2 Capacitated VRP
To solve the Capacitated Vehicle Routing Problem (CVRP) by a DP algorithm
we have to add an extra variable to the state definition. We need this variable to
check if the maximal capacity of a vehicle is not exceeded as well as to be able
to check the domination between two solutions in the same state. A solution
ςS,i

?? c may have a higher cost compared to an other solution ς ′
S,i

?? c′ in the same
state (c > c′), however, solution ςS,i ?? c can have more slack for the demand, that
is, have less capacity used, then solution ς ′

S,i
?? c′ . This breaks the optimality

principle, since not all completions of ςS,i ?? c have to be feasible completions of
ς ′
S,i

?? c′ .
To restore the optimality principle we add an extra state variable q, depicting

the remaining capacity, to the array γ of a state variable we compare within
a state. We are able to add q to γ instead of φ, since a solution with a lower
cost and a higher slack in demand dominates another solution for the same set
S and terminal node i. The new state definition becomes ξS,i ?? c,q where γ u γ′ is
defined as u = {≤, ≥}. We are able to update q correctly as the current vehicle,
as well as its start at the depot, can be determined by the set S. At such a node
we can set q to Qj , where Qj is defined as the capacity of vehicle j. At each
request node the demand at that node can be subtracted from the state variable
q leaving the correct remaining capacity. A partial solution is infeasible due to
the capacity if and only if q < 0, surpassing the remaining capacity. As we can
see, instances with a vehicle fleet that is heterogeneous by capacity can perfectly
be solved by this extended DP algorithm.

The addition of the capacity constraints multiplies the theoretical running
time for the DP algorithm for the VRP by a factor Q + 1. Here, Q = maxj∈V Qj
is the maximal capacity of any vehicle. For each value of 0 ≤ q ≤ Q we can have
a non-dominated solution ςS,i ?? c,q in state ξS,i. For example by having increasing
values for the costs, c = M + q with some constant M . This leads to a time
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complexity for the DP algorithm for the CVRP of O(Q (n +m)2
m2n). However,

in practice not all values will occur and solutions with different remaining capacity
will dominate each other. This is the same principle as we have seen with the
estimate by anti-chains as described in section 2.3.

Note: for a homogeneous vehicle fleet it may be profitable to break the
symmetry of the GTR in a bit different way than described in section 4.2.3 by
using a fraction of the demand instead of the number of request nodes as extra
constraint before allowing a vehicle to return to the depot. Especially when it
is to be expected that there is more spread in total demand delivered by each
vehicle than the number of request nodes visited by each vehicle.

4.3.3 Multiple compartment VRP
The CVRP can be extended to the Multiple Compartment Vehicle Routing
Problem (MC-VRP) [28,42,105] by adding compartments, each with their own
capacity, to each vehicle. A simple example of a vehicle with multiple com-
partments can be a truck with two or more trailers, or a truck with a cooling
section. For each vehicle vj we have a number of compartments pj and for each
compartment pkj a maximum capacity Qkj (j ∈ {1, 2, . . . ,m}, k ∈ {1, 2, . . . , pj}).
Furthermore, for each customer-vehicle combination we have a set of allowed
compartments Pij , where the complete demand has to be loaded into a single
compartment. Customers where the demand has to be delivered from multiple
compartments can be modeled by multiple customers at the same location. When
it is required that such demands are delivered consecutively it is easy to add a
fixed precedence relation between these virtual customers and to add a constraint
that they will need to be visited consecutively. It is possible to combine them into
a single customer request, however, this will explode the number of expansions,
and is from now on disregarded for the sake of the simplicity of this section.

To solve the MC-VRP by a DP algorithm we have to be able to check on the
remaining capacity of each compartment. To be able to perform this check we add
a state variable ~q to γ, similarly to the state definition of the CVRP, representing
the remaining capacity of each of the compartments. Since the current vehicle
is uniquely defined by S, the length of ~q is equal for all solutions within the
same state, and the values of ~q correspond to the same compartments. For each
expansion to a new node we have to make a choice in which compartment, of
the current vehicle vj , to load the demand. To represent this choice, we make
not a single expansion for each new node i, but ∣Pij ∣ expansions for the same
node i, one for each compartment where it is allowed to load the demand qi.

Since the new state variable ~q is a vector, this can lead to a lot of non-
domination partial solutions within the same state, as we have seen with the
JSSP in section 2.3. Let p be the maximum number of compartments in any
vehicle defined by maxvj∈V pj and let Q the maximum compartment size in any
vehicle defined by Q = maxvj∈V maxk∈{1,2,...,pj}Qkj , we have at most (Q + 1)p
possible value combinations in the vector ~q. Combining this with the maximal
number of expansion P for a single partial solution to a single node, defined by P =
maxvj∈V ,i∈R ∣Pij ∣ over all vehicle customer combinations. The time complexity
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for the DP algorithm for the MC-VRP becomes O(PQp (n +m)2
m2n).

When there is no constraint on the compartments, that is for each customer-
vehicle combination all or none compartments are feasible (∣Pij ∣ ∈ {0, pj}). Then
just the remainders of all compartments have to be known to check the feasibility,
not which compartment has which remaining capacity. This fact can be used to
reduce the number of possible non-dominated solutions per state by sorting ~q
on the remaining capacity. For example, when ~q is sorted, it can be that two
expansions, from the same solution to the same node for different compartments,
will be considered as equal within their state, so only one will remain. This
occurs when the demand is placed in two different compartments with originally
the same remaining capacity.

4.3.4 Pickup and delivery
For the Vehicle Routing Problem with Pickup and Delivery (VRPPD) the
demands are not solely pickup or solely delivery, as they are for the CVRP, so a
simple capacity check is not sufficient. The VRPPD combines linehauls from
the depot (deliveries) and backhauls to the depot (pickups). Typically, no goods
are transported between two customers. Exchanging goods between customers
and matched pickup and delivery where a specific good needs to be transported
from location a to location b are discussed later in this section.

For the VRPPD it is no longer sufficient to check the capacity at each customer
using only the remaining capacity. For the CVRP, the capacity is checked using
this remaining capacity. In the case of backhauls, the reaming capacity represents
the actual remaining capacity. In case of linehauls, the vehicle is “empty” after
planning each customer, since a delivery is just made and the reaming capacity
represents the capacity that still can be loaded at the depot. When we combine
these two flavors we have to keep track at the capacity we are still able to load
at the depot and the capacity we have to transport new load to the depot. We
simply change the state definition ξS,i ?? c,q of the CVRP to ξS,i ?? c,qd,qp

. Here, qd
is the capacity we are still able to deliver at this point in the route of the current
vehicle. That is, to be able to transport this from the depot to the current
node in the route without violating the capacity of the vehicle anywhere along
the route. The last variable qp is the capacity left to transport load from the
current node to the depot at the end of the route, this thereby also represents
the remaining capacity in the current vehicle after node i.

Both qd and qp start at the vehicle capacity Qj of vehicle j at the start of
the route of vehicle j. When the current node is a delivery node id the demand
of that node is subtracted from qd and qp is left the same as the same amount
can be loaded after node id. When the current node is a pickup node ip the
demand of this node is subtracted from qp as this load will occupy the vehicle
until the depot is reached. Furthermore, we set qd = min {qd, qp} as the amount
we can transport from the depot may be limited by what we already have loaded
during the route until the current customer. A partial solution is infeasible when
qd < 0 or qp < 0, since this means that the remaining capacity is insufficient at
the current node (qp) or somewhere earlier along the route (qd).
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The extra variable in the state definition adds an extra factor Q, number of
distinct values that can be obtained by qp, in the time complexity of the DP
algorithm in comparison to the CVRP, it now becomes O(Q2 (n +m)2

m2n).
For a matched pickup and delivery problem where a specific good needs to

be transported from location a to location b for each customer we add nodes for
each a and each b. A precedence relation is to be added between each pair a, b.
Also we have to make sure that when a vehicle visits a it also visits b, for this
a feasibility check can be added to ensure a vehicle returns only to the depot
when for each pair a and b holds that either none or both are scheduled. This
can easily be checked using only the set S in the state definition.

For customers where the demand is so high that no other demand can fit
together with this demand in any of the vehicles, the so-called Full Truck Loads,
the pickup and delivery node in the DP algorithm can trivially be contracted
into a single node that starts at the pickup location and finishes at the delivery
location, reducing the number of nodes.

The effect on the time complexity described above is that n may be replaced
with 2n depending on how the original problem is described. Furthermore, extra
precedence relations are added giving reductions described in section 4.2.1. For
k paired precedence relations this gives a reduction by a factor of ( 4

3)k.
4.3.5 Redistribution
Sometimes it is allowed to deliver goods that are not loaded at the depot but at
other customers. A good example for this variant is the redistribution of bicycles
over different rental locations in a city where it is allowed to return a bike at
another location than where it is rented. For this Pickup and Delivery variant
the state definition does not change. Instead we change the way qd and qp are
calculated. The process at the pickup node stays identical while at the delivery
node first is checked how much load is present in the current vehicle (Qj − qp) to
fulfill the demand at the delivery node. The demand that can be fulfilled with
the load in the vehicle is added to qp as it is unloaded and only the part of the
demand that needs to be fulfilled by loading at the depot is subtracted from qd.
The theoretical time complexity is the same as described above. However, in
practice we can expect the actual running times of this variant to be higher than
the running times of the VRPPD, since the value of qp is not strictly decreasing.
This can lead to more non-dominated partial solutions per state.

When there are more types of load transported, at each location multiple
types can be delivered or picked-up, or even a combination of the two. In the
previous example there may be three types of bicycles, man, woman and kids. In
that case qp can be turned into a vector ~qp where it represents not the capacity
that can be loaded but the actual loaded amount. So a partial solution renders
infeasible when

ř
~qp > Q. Now the actual load in the current vehicle is available

and the corresponding checks at a delivery can be made. For this extension the
time complexity of the CVRP could be multiplied by Q∣~qp∣, as all entries of qp
can range from 0 to Q. However, the values of ~qp are limited since

ř
~qp > Q.
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This gives at most (Q+∣~qp∣∣~qp∣ ) = O(Q∣~qp ∣∣~qp∣! ) possible values in ~qp. This gives a time

complexity of O(Q1+∣~qp ∣∣~qp∣! (n +m)2
m2n).

Also, a limited capacity at the depot can be handles by adding a state variable
qD which represents the stock (of bicycles) available at the depot. This adds an
extra factor QD to the complexity, where QD is the initial stock at the depot.
This can also be extended to multiple types by using ~qD thereby adding

ś ~QD
to the time complexity.

4.3.6 Time-windows

When we add time-windows to the VRP we get the VRPTW. For the VRPTW
we have to add an extra state variable tv, even when the objective is to minimize
the total time, where tv represents the time of the current vehicle. With the
TSP it may be possible to use the cost as time, since there is only one vehicle.
Service times at each customer can be incorporated trivially as this just changes
the value of tv after the expansion. The feasibility can easily be checked with
state-variable tv and tv can simply be calculated for each consecutive partial
solution. This adds an extra factor of tmax to the time complexity, where tmax is
the maximal allowed time for any vehicle.

Since the current vehicle can be deduced from the set S, variable travel
times for each vehicle can easily be incorporated without any difference in the
time complexity. This can be done by a vehicle dependent factor on the travel-
time/distance matrix. In fact any function depending on the current vehicle, the
edge and the departure time can be used. The only condition for the function is
that the arrival time should be monotonic in the departure time. This prevents
that departing later could result in a earlier arrival time. However, when such a
function is needed extra waiting time could be added to find the best departure
time to get the earliest arrival possible according to the current earliest departure
time. This allows for time dependant travel times to take (expected) congestions
into account.

4.3.7 Driving and working hours regulations

Also driving and working hours regulations for routes in the VRP can be incorpo-
rated in the DP algorithm. Driving and working hours regulations are enforced
in many countries to limit the driving and working hours of truck drivers to
prevent accidents due to driver fatigue. These regulations are often defined in
terms of total working and driving hours per day, and the total of consecutive
driving hours before a short break is obligatory. These rules are often defined
with complicated exceptions like the possibility to split up breaks or shorten
a daily rest a few times a week. More specifics on these rules can be found in
Goel [53,54] and Goel and Kok [55]. Much more on this specific topic can be
found in Kok.
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Goel [54] describes a labeling algorithm to find a feasible solution for a
route according to the European Union driving hours regulation. The labeling
algorithm uses different activities like drive, work, break and rest to be
sequenced for a given sequence of customers. This labeling can be directly
incorporated into the DP algorithm where all the labels that are used for
domination can be added to γ. Two domination criteria of Goel [54] consist of
two labels which can be named and also be added to γ. For each expansion
in the DP algorithm all possible choices in the labeling algorithm between two
customers need to be considered as an expansion. This is similar to the multiple
expansions described in section 4.3.3.

Adding this labeling algorithm to the DP algorithm simply adds one, albeit
large, constant factor to the time complexity for a given set of regulations. For a
given set of regulations the number of non dominating labels for a given sequence
and the number of possible options of activities between two customers is limited
by a constant.

4.3.8 Inter-route time constraints
Sometimes it is allowed for a vehicle to visit the depot multiple times. To allow
for this in the DP algorithm, when there are not yet separate nodes for the
pickup and the delivery, extra nodes at the depot can be created. These can be
seen as customers at the depot with zero demand that have to be handled by
specific vehicle in a specific order. At such a customer the remaining capacity is
reset to the full capacity of the vehicle.

It is also possible to model each route of a vehicle as a single tour in the
GTR. This creates precedence relations for the start and finish nodes of these
routes, it also creates inter-route dependencies for these tours for which extra
state dimensions have to be added. However, it also allows us to alternate the
routes of different vehicles. For example the VRP solution in figure 4.3a where
we have two routes for each of the two vehicles blue and green. For each of
the two vehicles the lighter route has to be performed after the darker (dashed)
route. A possible GTR for this solution is given in figure 4.3b where the first
route of each vehicle is performed first while the vehicles are alternated in the
GTR. This principle allows us to cope with a wide variety of other inter-route
constraints.

To be able to alternate between routes of different vehicles the current state
of each vehicle have to be kept in the state variables, such as the current time
and the current remaining capacity for each vehicle. As long as the nodes for
each trip where a new sub tour can start are known, the last node for each
vehicle can be derived from the set S. Naturally, adding all these state variables
explodes the time complexity of the DP algorithm.

With these multiple routes extra inter-route constraints become available to
incorporate into the DP algorithm. For example the possibility to let drivers to
interchange trucks or trailers at some location, for example a country border, to
let them return home twice as fast. This can be modeled by having two routes
for each vehicle with precedence relations between the routes of the different
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Figure 4.3: An example of a VRP solution with 2 vehicles with each two routes

vehicles. For example in figure 4.4 such a solution with its corresponding GTR
is given. Notice the order of the routes in the GTR, this order has to respect the
order of the transports, given in red and yellow, as well as the order within each
of the vehicles. This order is not fixed within the GTR over all solutions, the
solutions dictate the feasible orders of the routes within the GTR. The waiting
time at the border can be modeled by setting the current time of the first vehicle
to arrive to the current time of the second vehicle at its arrival. Due to the
precedence relations the first vehicle is prohibited to leave before this arrival.
Note that the choice of the pairs of drivers interchanging their equipment is not
made by this model. The locations of the origin and destination nodes between
multiple routes of the same vehicle can be variable in the model by setting all
distances of these nodes to zero.

Another example is the combination of long-haul routes with fine distribution
in a single VRP. A good example for this kind of planning is parcel delivery.
Packages are retrieved at the customers and shipped to the closest warehouse.
From there truckloads are combined to be transported between warehouses. The
final delivery is made again from the warehouse closest to the delivery location.
For a single parcel we have three different pickup and delivery pairs that have
time and thereby precedence relations between them. To be able to track the
different parcels we have to add the time they are available to ship from the
warehouse into the state variables. This time needs to be added for each parcel
that is in the current GTR in a warehouse, that is for each parcel where at
least one pickup and delivery pair is scheduled (in S), but not all of them. The
resulting relations are similar to the relations created by the two transports in
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Figure 4.4: An example of a VRP solution where trailers are switched at the
border

figure 4.3 between the first route of each vehicle and the second route of the
other vehicle.

4.3.9 Mixing variants
It is in general possible to mix the different variants such as explained in this
section. This makes DP a general framework for both exact and heuristic VRP
solutions. The importance of this fact may become more apparent in the next
section.

4.4 Using DP as pricing instrument
A state space can grow beyond practical usage when trying to solve a VRP by
DP, especially when extra state variables need to be added. Bounding and using
DP as a heuristic can limit the state space but may have adverse effects on the
running time performance and solution quality.

To limit the size of the DP algorithm that has to be calculated a slightly
altered version of our DP algorithm can be incorporated into a column generation
technique as a pricing instrument. We did not test such a procedure, but we want
to mention it here as it may be promising to use our general framework for solving
rich VRPs as pricing instrument within a column generation framework. For a
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general introduction to column generation for the VRP we refer to Feillet [43].
In Dell’Amico, Righini, and Salani [35] a DP algorithm is used as a pricing
instrument. A large variety of pricing routines can easily be achieved from our
DP framework. Since the DP algorithm should only create a route for a single
vehicle the DP state space becomes more limited. Only nodes for a single vehicle
are needed and the number of request nodes that can be planned efficiently into
a single vehicle is almost always very limited, especially for rich VRPs.

However, the algorithm should slightly be altered. The DP algorithm de-
scribed for the TSP and VRP in this dissertation gives only solutions where
all requests are planned. Implicitly, the last node of the last vehicle could only
be planned when all requests are planned otherwise every expansion on such
solution would be infeasible and the last stage would not be reached. When
DP is used as pricing instrument the node that represents the end of the route,
typically the return to the depot, may be scheduled as expansion of any partial
solution, provided that this expansion is feasible. The main difference with the
previous described algorithm is that such an expansion was a-priori infeasible,
while as pricing instrument such infeasibility can only occur as effect of the
specific type of VRP. For example, with a matched pickup delivery problem,
see section 4.3.4, the return node of a vehicle can only be scheduled when all
deliveries matching the pickups are scheduled. Finally, every partial solution
where the return node of the vehicle is scheduled should be considered as final
result. This is similar to the principle for the Steiner tree problem described in
section 1.2.2.

82



5

FIVE

The Job Shop Scheduling
Problem

In this chapter we look in more detail at the Job Shop Scheduling Problem.
We show a way of adding bounding to the DP algorithm for the JSSP. As the
algorithm for the bounding described in section 5.1 is an implementation of
existing work, the description given is brief. The description of the bounding
algorithm with maintenances in section 6.4 is more elaborate. This description
can also be used to get a better understanding of the specifics of the bounding
algorithm for the general JSSP, instead of the references given in section 5.1.
With computational results we show what the effects of these bounds can be
on the performance of the DP algorithm. Using dynamic bounding also lower
bounds for an instance can be found, we use this to improve the lower bound of
16 instances. We show in detail how to change the procedure of section 3.2 in
order to find all optimal solutions to a JSSP.

5.1 Dynamic bounding for the JSSP
To limit the size of the state space of the DP algorithm bounding can be used to
remove partial solutions as described in section 3.1. Many different approaches are
possible when applying bounding to the DP state space. In fact, any procedure
that provides a lower bound on the completion of a partial solution can be used
to prune the state space.

We implemented the parallel head–tail adjustments of Brinkkötter and
Brucker [21] to be used as bounding for each partial solution of the DP state
space. The advantage of this algorithm for us is that the heads and tails can
be saved with each partial solution to be reused when an expansion is made.
Also the scheduled operations can easily be fixed by setting the head and tail
to the start time and the upper bound minus the finish time of the operation,
respectively. Another advantage is that this algorithm also provides precedence

83



5

The Job Shop Scheduling Problem

relations between operations which can be used by the DP algorithm. These
precedences are specific for a partial solution and all extensions derived from
it. This can easily be incorporated into the DP algorithm by allowing only
expansions for which all predecessors are already in the partial solution.

For each expansion, we use this algorithm to recalculate the heads and tails,
any new precedences are also saved. It is possible that the given upper bound
is invalid for any completion of a partial solution, in which case the partial
solution is regarded as infeasible. All new variables, the heads and tails as well
as the precedences could be stored in the bookkeeping β variables of the state
definition. However, the (only interesting) values for not yet scheduled nodes
could conceptually be derived from the current aptitude value for each job and
the global upper bound. As head of the first unscheduled operation for each job
the aptitude value minus the operation time would be used. For performance
reasons the heads, tails and precedences can be cached, but the state definition
does not have to be changed.

With this bounding the running time of the DP algorithm can be drastically
decreased, as can be seen in section 5.2. A valid upper bound can be obtained
by any heuristic, for example a heuristic version of the DP algorithm itself can
be used. To improve this bound the DP algorithm including the bounding can
be run iteratively while limiting the number of partial solutions to be expanded
in each stage, as long as the upper bound improves.

In the next section the parallel head–tail adjustments of Brinkkötter and
Brucker [21] are described.

5.1.1 Parallel head–tail adjustments
The parallel head–tail adjustments of Brinkkötter and Brucker [21] are described
more elaborately in Brinkkötter and Brucker [20]. This section describes briefly
this algorithm and how it can be incorporated into the DP algorithm.

First we start with a single machine problem obtained by taking all operations
I of one machine of the original JSSP. Now we define for each operation o ∈ I a
head ro and tail qo. The corresponding head–tail problem is that of finding a
schedule for which each operation does not start before its head and for which
maximum of the finish time plus the tail (maxo∈I {Co + qo}) is minimal.

The Jackson’s preemptive schedule (JPS) is an optimal solution to the pre-
emptive version of this problem and can be obtained by applying the following
procedure:

At time t schedule an available operation with the largest tail, until either the
completion time of this operation or the time defined by the smallest head
with ro > t.

Consider a partial schedule constructed by this procedure until time t = rw
defined by the head of operation w and let p+o be the remaining processing time
for operation o ∈ I at time t.

The head–tail adjustments are based on two results from Carlier and Pin-
son [24]. Let UB be an upper bound for the single machine problem, when for
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some operation o ≠ w we have that

rw + pw + po + qo > UB.

Operation w cannot start before operation o is finished and rw ≥ ro + po. Fur-
thermore when we have for some subset Y Ă I with Y Ď { o ∈ I ∣ p+o > 0 } \ {w}
that

rw + pw + ÿ

o∈Y
p+o + min

o∈Y qo > UB

holds, then w cannot start before any operation in Y . Therefore, rw can be set
to rw +ř

o∈Y p+o . Note that the first inequality is covered by the second inequality
when p+o = po, so it needs only to be checked if p+o ≠ po.

The head–tail adjustments are done for a single machine by using these two
inequalities, by finding the maximal set Y efficiently, and update all the heads
in a single sweep of finding the JPS. Thereafter the roles of heads and tails are
reversed. In the next sweep the heads, now actually the tails, are updated again.
This procedure is repeated until no further updates are possible.

For the JSSP the heads for all operations on all machines can be updated
simultaneously by performing the head–tail adjustments in parallel for all ma-
chines updating the heads of all operations of the JSSP in one sweep, using the
upper bound UB of the JSSP for all machines.

To incorporate this into the DP algorithm for any solution ςS created by an
expansion the heads of the next operations for each job (o ∈ ε(S)) can be set
to α(ςS , o) − p(o). The precedence relations found during the parallel head–tail
adjustments can be used to limit the possible expansions later in the DP state
space for all descendants of solution ςS . Solution ςS can be discarded when no
Jackson’s preemptive schedule can be found within the UB.

5.2 Finding JSSP solutions
To demonstrate the capabilities of DP on the JSSP we used several sets of
benchmark instances. First we used no bounding and without limiting the state
space only very small instances could be solved. With bounding added to DP
many more instances could be solved, even with a very limitative state space
width, and for a lot of instances optimality can be proven. We also used DP to
obtain new lower bounds for 16 instances.

The 242 instances we used are from eight sets: Fisher and Thompson [44],
Lawrence [79], Adams, Balas, and Zawack [2], Applegate and Cook [7], Storer,
Wu, and Vaccari [110], Yamada and Nakano [123], Taillard [111] and Demirkol,
Mehta, and Uzsoy [38]. A detailed overview of these instances including the best
known values for their bounds with references to their origin can be found in
appendix B. Specifics on the computer used to obtain these results can be found
in appendix A.

To achieve a DP-based heuristic for the JSSP by limiting the state space
we only limited the number of partial solutions to be expanded by setting H
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(section 3.3.3) and not by limiting the number of expansions for such a partial
solution. So all feasible expansions are created and the bound E (section 3.3.2)
is not used as the number of feasible expansions is already limited to N, since at
most a single operation per job is feasible to be scheduled next. To select the
H solutions to expand for each stage, the lower bound on the completion, as
described in section 5.1, is used.

5.2.1 No bound
When we set no bound the state space from the DP algorithm gets huge. Without
any bounding we were able to solve and prove optimality only for instances up
to just 50 operations. This takes quite some time and memory, as can be seen in
table 5.1.

Instance # Jobs # Machines Optimum CPU (s) Memory (MB)
ft06 6 6 55 0 3
la01 10 5 666 1163 4937
la02 10 5 655 1502 6163
la03 10 5 597 931 3674
la04 10 5 590 1230 5384
la05 10 5 593 726 3279

Table 5.1: Runs with no bounds

However, the computation effort observed is much less than the upper bound
established in section 2.3. As we have seen in that section the maximum number
of non-dominated solutions for any state is approximately bound by U = pmax

N√
N

.

The maximum total number of solutions becomes then (M+1)Npmax
N√

N
, since there

are (M + 1)N states possible with feasible solutions. When we compare these
theoretical bounds to the results obtained from the runs above which did not
limit the state space and did not use any bound, we see that the actual results are

Instance # J # M Observed count Theoretical UB
per state total per state total

ft06 6 6 13 30 410 408 ¨ 103 48 030 ¨ 106

la01 10 5 142 63 170 930 25 838 ¨ 1015 1562 ¨ 1024

la02 10 5 157 80 862 884 28 599 ¨ 1015 1729 ¨ 1024

la03 10 5 191 50 910 277 12 314 ¨ 1015 745 ¨ 1024

la04 10 5 114 68 208 803 25 838 ¨ 1015 1562 ¨ 1024

la05 10 5 182 40 229 132 23 319 ¨ 1015 1410 ¨ 1024

Table 5.2: Number of partial solutions
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factors lower, see table 5.2. This suggests that it may be possible to improve our
theoretical bound and hence establish that our algorithm has a lower complexity
than the upper bound on the complexity we have proven.

5.2.2 Optimal bound
With the use of the bounding described in section 5.1 and allowing only 3 states
per stage (H = 3) to be expanded, see section 3.3.3, we were still able to find the
optimal solution for 14 instances when we used the optimal value as a bound.
Note, this does not prove the optimality. These runs are naturally very quick,
most within a second, see table 5.3. We find it very surprising to find so many
optimal solutions by such a narrow search within the total state space.

Instance # Jobs # Machines Optimum CPU (s) Memory (MB)
ft06 6 6 55 0 1
ft20 20 5 1165 0 1
la05 10 5 593 0 1
la06 15 5 926 0 1
la07 15 5 890 0 1
la08 15 5 863 0 1
la09 15 5 951 0 1
la10 15 5 958 0 1
la11 20 5 1222 0 1
la12 20 5 1039 1 1
la13 20 5 1150 0 1
la14 20 5 1292 0 1
swv16 50 10 2924 27 2
swv17 50 10 2794 24 2

Table 5.3: Runs with H = 3 and bounded with the optimal value

Without restricting the number of expansions and using the optimal values
as bounds we could prove the optimality of all instances with a maximum of 10
jobs. Other instances would require more memory. With these instances the run
times are very quick, except for two cases the optimality was proved within a
minute, see table 5.4.

One of these instances is the famous instance ft10 proposed in 1963 by Fisher
and Thompson [44], which was first solved in 1986 by Carlier and Pinson [24].
We solve this instance in 60 seconds using 95470 non-dominated states in the
complete state space. The majority of these states are in the first 20, of the
100, stages of the state space, in the last 80, 75, and 70 stages there exist only
7315, 776, and 256 non-dominated solutions, respectively. See figure 5.1 for the
number of non-dominated solutions per stage for the run of ft10 in table 5.4.
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Instance # Jobs # Machines Optimum CPU (s) Memory (MB)
abz5 10 10 1234 42 8
abz6 10 10 943 3 2
ft06 6 6 55 0 1
ft10 10 10 930 60 14
la01 10 5 666 25 12
la02 10 5 655 1 1
la03 10 5 597 0 1
la04 10 5 590 0 1
la05 10 5 593 466 243
la16 10 10 945 44 10
la17 10 10 784 1 1
la18 10 10 848 14 4
la19 10 10 842 9 2
la20 10 10 902 3 1
orb01 10 10 1059 36 8
orb02 10 10 888 29 6
orb03 10 10 1005 185 26
orb04 10 10 1005 20 6
orb05 10 10 887 29 5
orb06 10 10 1010 40 8
orb07 10 10 397 8 3
orb08 10 10 899 9 3
orb09 10 10 934 14 4
orb10 10 10 944 1 1

Table 5.4: Runs bounded with the optimal value
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Figure 5.1: Number of non-dominated solutions per stage for instance ft10
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5.2.3 Finding solutions
Trying to find the best solutions solely with DP we started with very small
explorations within the DP state space by setting H = 10 and start with no
bound in the first iteration. In the subsequent iterations we used the result of the
previous iteration as an upper-bound. We iterated this until we did not improve
the solution. It is profitable to rerun with a better upper bound and the same
number of solutions to expand H, this is in contrast with the bounding used for
the VRP described in section 4.1. The parallel head–tail adjustments described
in section 5.1.1 can provide a higher lower bound when a lower upper bound is
used. This affects the state space by bounding extra partial solutions. Besides,
since the lower bound, which is used as estimated completion, changes the partial
solutions selected to be expanded can change. This is an advantage over the
dynamic bounding we developed for the CVRP in section 4.1, since there the
value of the upper bound did not affect the estimation of the completion. When
this iterative procedure did not improve the solution we repeated the process by
setting H = 100 and using the best bounds from the runs with H = 10.

With these very limited state space we are able to find the optimal solution
for 29 of the instances, some of which are quite large. However, for some small
instances we cannot find the optimal solution with this very limited state space
size, although we can find this solution when we use the optimal value as an
upper bound as we have seen above. With H = 100 the running time on the
large instances becomes quite high. Possibly, a better strategy would be to find
a reasonable lower bound (see section 5.2.4), to use this lower bound as an upper
bound for the DP algorithm using a very small value for bound H. When no
solution is found, the DP algorithm can be repeated while the upper bound
given to the algorithm could be slowly increased, until a solution is found.

Detailed results of these runs can be found in table A.2 on pages 130–139
in appendix A. Figure 5.2 shows the gap with the best known value of all the
instances grouped by number of operations first and sorted by gap. It also shows
the running time of the complete iterative process to achieve this gap.

5.2.4 Finding lower bounds
As some instances are not yet solved we also tried to improve known lower bounds.
We have already discussed how to use DP to find optimal solutions and also as a
heuristic for upper bounds, now we focus on tightening lower bounds. In order
to prove that a value v is a valid lower bound we can run the DP algorithm for
the JSSP using v − 1 as an upper bound. When the DP algorithm is run without
any limitation on the state space size, such as bounding the number of expanded
solutions by width H or bounding the number of expansions by E, it would find
an optimal solution given v − 1 is a valid upper bound. If no solution is found
we may conclude, since our instances take only integral values, that v is a valid
lower bound on any solution.

When v − 1 is a valid upper bound the optimal solution would be found
which would cost a lot of calculation time for the larger instances. To limit this
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Figure 5.2: The gap with the best known solution and running time for the 242
instances

calculation time we set a stage width of H = 105 and let a run terminate as soon
as this width would leave solutions unexpanded.

For the instances with known optimal values we tried to validate that the
optimal value is a lower bound thereby proving the optimality of the known
solution. As we can see in table A.3 (pages 140–141) the optimality of 121 of the
145 instances with known optimal values could be proven. Information on the
24 instances for which we could not prove the optimality is given in table A.4
(page 141).

For 16 of the 97 unsolved instances we could find a better lower bound than
the current best known lower bound. For these instances we first increased the
value of the current best known lower bound twice before using binary search
to find the best lower bound we could prove using our DP algorithm with a
maximal stage width of H = 105. The results and the new lower bounds can be
found in table 5.5.

With this strategy it is typically the case that the DP algorithm takes much
longer to run when the fact that a certain value is not a valid upper bound
cannot be proven compared to the situation when this fact can be proven. This
difference originates from the following consideration: if the fact that a value
is not a valid upper bound cannot be proven, then the state space is filled to
at least H partial solutions in the last stage before termination, while a value
can only be proven not to be a valid upper bound if the number of solutions
is less than H in each stage (i.e., H did not affect the size of the state space).
Often when a bound can be proven to be a valid upper bound it is the case that
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early in the state space all solutions are bounded so no solution can be expanded
and the algorithm stops. A good example of this difference can be found in the
results for the instances dmu12 and dmu19, both ran for 9 iterations. For the
instance dmu12 most of the times the algorithm could prove the upper bound to
be invalid, leading to an increase of 63 in the lower bound with only a difference
of 14 with the best known upper bound. However, for the instance dmu19 the
lower bound could only be increased by 3 leaving a gap of 96 with the best known
upper bound. When we take a look at the run times for both instances we see
that a large improvement for dmu12 is done in less than 10% of the computation
time required to achieve a small improvement for instance dmu19.

Instance # Ja # Mb LB UB New LB # Ic CPUd Meme

dmu06 20 20 2998 3244 3042 11 13110 858
dmu07 20 20 2815 3046 2828 11 10651 924
dmu12 30 15 3418 3495 3481 9 1479 869
dmu19 30 20 3669 3768 3672 9 16657 1536
dmu42 20 15 3172 3390 3224 11 13134 626
dmu44 20 15 3283 3488 3299 11 11615 777
dmu45 20 15 3001 3272 3039 11 7879 684
dmu51 30 15 3917 4167 3954 11 23102 1376
dmu52 30 15 4065 4311 4094 11 18488 943
dmu55 30 15 4140 4271 4146 8 34473 1025
dmu59 30 20 4217 4624 4219 3 5693 1349
dmu62 40 15 5033 5265 5041 11 33251 2163
dmu65 40 15 5105 5190 5107 3 15678 2026
dmu66 40 20 5391 5717 5397 12 17802 2467

swv07 20 15 1447 1594 1457 11 9539 788

ta50 30 20 1807 1923 1808 2 1233 1327
a # Jobs c # Iterations d Sum of CPU over all iterations (s)
b # Machines e Max Memory used over all iterations (MB)

Table 5.5: Improvements of lower bounds found by DP

5.3 All solutions for the JSSP
With the iterative DP algorithm described in section 3.2 not all optimal solutions
will necessarily be found when using the indirect bounding in the DP algorithm
described in section 2.3. According to this description we would add Ω to φ in the
state space definition ξS ?? ~α

77 ~η, resulting in ξS,Ω ?? ~α
77 ~η. As described briefly at the

end of section 3.2, the bookkeeping variables β(= ~η) allow for indirect domination
of a partial solution ς that has an optimal completion ς̊ by a partial solution
ς ′ which has no optimal completion. This indirect domination results from the
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fact that the optimal completion ς̊ of ς can be used to optimally complete ς ′

to solution ς̊ ′. However, this completion ς̊ ′ can be unordered, so the ordered
sequence of ς̊ ′ is not a completion of ς ′. In other words, in the ordered sequence
of ς̊ ′ at least one operation of the completion has to be before the last operation
in ς ′.

In order to ensure that optimal solutions, of which partial solutions are
dominated indirectly by a partial solution without a direct optimal completion,
are found we have to alter the DP state space a little further. First, we have to
find a way to identify partial solutions like ς ′ that have no optimal completion,
but that can dominate partial solutions with an optimal completion. When
partial solution ς ′ itself does not have an optimal completion but dominates
another solution ς which has an optimal completion ς̊, there is an operation o
which will occur before the last operation of ς ′ in the ordered optimal solution ς̊ ′

that results from adding the optimal completion of ς to ς ′.
Without loss of generality, we assume that ς ′ consists of the sequence ⟨ς ′

a, o
′, ς ′

b⟩
and the optimal solution ς̊ ′ starts with the sequence ⟨ς ′

a, o⟩ where o is an operation
of the optimal completion. Now the partial solution ς ′

a has an optimal completion
(̊ς ′), the partial solution ⟨ς ′

a, o
′⟩ however does not have an optimal completion.

When the optimal solution ς̊ ′ is found, Ω will not be empty for ς ′
a. However, Ω

will be empty for solution ⟨ς ′
a, o

′⟩. Note that η(ς ′
a, o) = 1, since it is a feasible

expansion, and that η(⟨ς ′
a, o

′⟩ , o) = 0 as o is moved before o′ in the ordered
solution ς̊ ′. The possibility to move o before o′ while ς ′

a is optimal is exactly what
adds the possibility to the expansions of ⟨ς ′

a, o
′⟩ to dominate partial solutions

with an optimal completion. In fact ⟨ς ′
a, o

′⟩ would have an optimal completion if
we would not require the operations in the solutions to be ordered (according to
proposition 2.2).

To prevent extensions of ⟨ς ′
a, o

′⟩ to dominate other partial solutions we want
to add an identifier to Ω. We cannot use a number n as this would indicate that
partial solution ⟨ς ′

a, o
′⟩ could be completed to the n-th found optimal solution.

Also we want to identify the point in the sequence where this partial solution did
not have an optimal completion anymore. With any of the (numeric) identifiers
in Ω for ς ′

a, and the last operation oa of ς ′
a the location where we have no optimal

completion anymore is uniquely defined. When we add o′ to the identifier all
extensions of ⟨ς ′

a, o
′⟩ are defined by this identifier. o is needed in the identifier to

deduce when this identifier should be removed from the state where an expansion
belongs to. When any expansion schedules a new operation on machine m(o), o
cannot be moved before o′ anymore so the identifier can be removed. Actually
m(o) is sufficient in the identifier to be able to deduce when to remove it from
Ω.

This results in the identifier “n∣oa∣o′∣m”. This identifies an expansion of the
n-th optimal solution up to operation oa, which is expanded to o′ and for which
there is an operation that is to be scheduled on machine m for which an ordered
expansion is no longer possible. For any partial solution ς ′

a�o′ which has no
optimal completion (yet), which is a expansion of a partial solution ς ′

a with an
optimal completion, and for which there is an operation o(≠ o′) which is an
ordered expansion of ς ′

a but not of ς ′
a�o′, the partial solution ς ′

a�o′ should
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be added to a state with identifier “n∣oa∣o′∣m(o)” added to Ω. Here, an optimal
completion of ς ′

a is the n-th optimal solution. When there are multiple operations
that are an ordered expansion of ς ′

a but not of ς ′
a�o′ multiple identifiers could

be added to Ω. A single identifier for each of the machines such operation should
be scheduled on. As soon as any operation is scheduled on machine m any
identifier “. ∣. ∣. ∣m” should be removed from Ω.

This results in the separation of any extension of ⟨ς ′
a, o

′⟩ from the state space
with respect to dominance until with any expansion a new operation is scheduled
on machine m. The effect of this separation is that these extensions will only
dominate among themselves and will not dominate any other partial solution
with an optimal completion. When ς ′

a�o′ indeed does not have an optimal
completion, this domination is profitable as fewer partial solutions are considered.
When ς ′

a�o′ does have an optimal completion (which is not found yet), the
result is that possibly this solution is found in a earlier iteration of the iterative
DP approach, since less domination for this solution takes place. All domination
that occurs after the addition of the new identifiers would also have occurred
without these new identifiers. The new identifiers only assure that the indirect
domination between the partial solutions ς and ς ′ does not take place as soon
as the optimal solution produced by the ordered sequence of the extension of ς ′

with the optimal completion of ς is found.

5.3.1 Finding all optimal solutions
For all instances with at most 10 jobs we tried to find all optimal solutions.
Using the algorithm described in sections 3.2 and 5.3 we could find all optimal
solutions for 19 of the 24 instances. For 5 instances the process ran out of the
given 13 GB of memory, for one instance, la05, this happened in the first run.
For this instance a single run is repeated without limiting the memory.

The implementation used for these results keeps the complete state space
of the DP algorithm in memory. This state space is updated after each run
to isolate the partial solutions of newly found optimal solutions as described
in section 3.2. Furthermore, expansions of these partial solutions are possibly
isolated as described in section 5.3. Also, two or more partial solutions which
are equal with respect to the dominating criteria are all kept instead of only one.

The result of this implementation is that much more memory is used, since all
stages are kept together in memory at the same time. The run time is shortened
as large parts of the state space do not have to be re-expanded every iteration.

As we can see in table 5.6, the number of optimal solutions can vary a lot.
We could not find a relation between the number of optimal solutions and the
difficulty to find an optimal solution. For example, compare the results for orb03
and orb10 in tables 5.4 and 5.6.

For the instances which used all memory not all optimal solutions are found,
table 5.7 gives the number of unique optimal solutions we found. These solutions
were found in earlier runs of our algorithm than the run reported in section 5.3.
Earlier implementations of our algorithm did find more solutions using the same
amount of memory but did not have the guarantee to find all optimal solutions.
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To give an impression of different optimal solutions all different schedules of
orb06 are shown in figure 5.3. The differences are marked in the schedules, these
differences can be described as different orders for operations:

• o29 and o45 on m5 (columns 1,2 vs. 3,4)

• o75 and o87 on m9 together with o85 and o97 on m10 (columns 1,3 vs. 2,4)

• o61, o72, o89 and o95 on m7 (rows 1 vs. 2 vs. 3–8)

• o81, o94, o98 and o99 on m10 (per row, where rows 1–3 are equal)

Instance # Ja # Mb # Solutions # Ic CPUd Meme

abz5 10 10 480 23 371 1420
abz6 10 10 2159 46 14 97
ft06 6 6 53 9 0 16
ft10 10 10 13120 36 248 822
la01 10 5 86173f 45 3983 13312
la02 10 5 66989 566 1194 732
la03 10 5 720 29 1 29
la04 10 5 83284 1243 3446 936
la05 10 5 682f 2 1686 15245
la16 10 10 47880f 109 27387 13312
la17 10 10 266573f 1304 1846522 13313
la18 10 10 42158 551 1480 1964
la19 10 10 960 34 43 222
la20 10 10 14016 222 162 466
orb01 10 10 9120 95 100 369
orb02 10 10 504 19 168 781
orb03 10 10 248 26 334 1214
orb04 10 10 96 19 44 157
orb05 10 10 288 17 81 319
orb06 10 10 32 6 79 300
orb07 10 10 162 10 25 115
orb08 10 10 302727f 107 118732 13398
orb09 10 10 108270 868 7445 3701
orb10 10 10 15951 158 74 328

a # Jobs c # Iterations d Sum CPU over all iterations (s)
b # Machines e Max Memory used in all iterations (MB)
f Out of memory: Not all optimal solutions

Table 5.6: All optimal solutions for small JSSP instances
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Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9 Job 10

Figure 5.3: Schedules for all optimal solutions of orb06
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Instance # Solutions in table 5.6 # Different Solutions found
la01 86173 278505
la05 682 692
la16 47880 189632
la17 266573 833178
orb08 302727 373020

Table 5.7: Number of found optimal solutions for small JSSP in-
stances where not all are found

For the instance orb07 the algorithm is altered a bit as it contains an operation
of zero length. Not all optimal solutions were initially found due to the definition
of an ordered sequence. There exists an operation with a zero duration (operation
100) on a machine with a lower machine number as the preceding operation of
the same job. If this operation is to be scheduled with the same finish time as its
predecessor of the job there exist no feasible ordering to represent this. Since both
operations have the same finish time, they should be ordered according to the
index of the machine, however, this conflicts with the precedence relation given
by the job. For our implementation this was solved by allowing this operation to
follow the preceding operation of its job directly breaking the ordering described
in this thesis.

Remark We defined the processing as pmj ∈ �. If this has to be generally
extended to pmj ∈ �0 proposition 2.2 does not provide a unique sequence. It
is even possible that no sequence for a schedule exist. When pmj = 0, we here
assume the operation still has to visit machine m like any operation, however,
the processing time can be neglected. When zero duration operations have
to be taken into account a solution to fix this ordering could be to separate
the operations with zero processing time within the ordering. That is for
operations with the same end time any operation with non-zero processing
time should precede any operation with zero processing time. After this the
machine index can be used as tie breaker again. This way a schedule can
have only multiple ordered sequences when multiple zero processing time
operations are scheduled at the same time on the same machine, however,
these can essentially be seen as different solutions.

All optimal solutions found for these and other instances are published on my
web site with JSSP instances. Also the bounds described in appendix B can be
found on this site. This web site can be found at http://jobshop.jjvh.nl [67].
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SIX

The Job Shop Scheduling
Problem with Scheduled

Maintenances

In this chapter we extend the JSSP by adding extra constraints to the problem
to incorporate maintenance of the machines into the problem. For this new
problem we create a Mixed-Integer Programming model as well as an extension
of the DP algorithm for the JSSP to incorporate these maintenances. We also
extend the bounding described in section 5.1 to incorporate maintenances. To
be able to do computational experiments we propose a method to create new
instances with various characteristics. This chapter ends with a computational
comparison of the DP algorithm for the Job Shop Scheduling Problem with
scheduled Maintenances with the Mixed-Integer Programming model.

6.1 Adding maintenances
In practice the machines that are modeled in the JSSP may require maintenance
in order to prevent them from breaking down. The repair cost and cost of the
production lost during such a breakdown is in general much more expensive than
scheduling some maintenance in advance. We assume that the maximum operat-
ing time without maintenance (uptime) U i and the duration of the maintenance
(downtime) Di are deterministic and known in advance for each machine mi.
This problem can be seen as an extension of the single-machine problem studied
in Qi, Chen, and Tu [100].

This problem we call the Job Shop Scheduling Problem with scheduled
Maintenances (JSSPM) and is, to our best knowledge, not yet studied in literature.
We show first that a solution cannot easily be constructed from an optimal JSSP
Solution. Then we propose a Mixed-Integer Programming (MIP) formulation
for the problem, working to our final goal for this section: to incorporate this
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maintenance in the DP algorithm for the JSSP.
A straightforward way of scheduling these maintenances would be to take

the schedule of the optimal JSSP solution and schedule maintenances whenever
the next operation on a machine would exceed the maximum uptime for that
machine schedule a maintenance before that operation. However, this procedure
is not necessarily optimal as we can demonstrate with the instance of the JSSP
described by table 6.1.

Job 1 Job 2 Job 3 Job 4
m(o) p(o) m(o) p(o) m(o) p(o) m(o) p(o)

o1 1 3 o2 2 7 o3 3 3 o4 1 5
o5 2 7 o6 1 10 o7 2 3 o8 3 5
o9 3 9 o10 3 2 o11 1 3 o12 2 7

Table 6.1: Instance of the Job Shop Scheduling Problem

The optimal makespan for the JSSP is 25 with the schedule given in figure 6.1.
When the maximum uptimes (U i) are 10, 10 and 11 and the downtimes (Di)
are 2, 2 and 8 for machines m1, m2 and m3, respectively, adding the necessary
maintenances (R) in the optimal solution described above would produce the
schedule shown in figure 6.2, with a value of 32. However, the optimal solution
of the problem with maintenances has a value of 29. This solution is the one
depicted in figure 6.3. Removing the maintenances from the optimal solution of
an instance with maintenances does not lead necessarily to an optimal solution
to the original JSSP instance as is shown in figure 6.4. The resulting schedule
has a value of 26 instead of 25.

We conclude that we cannot easily create the optimal solution of the JSSP
with maintenances from the optimal JSSP solution or vise-versa. The Job
Shop Scheduling Problem with scheduled Maintenances is an NP-hard problem
because it has as a special case the Job Shop Scheduling Problem. This case can
be created by setting the maximum time that a machine can operate without
maintenance to a value greater or equal than the sum of the processing times of
all jobs in that machine. Another option is setting all downtimes to 0. However,
it is possible that a JSSPM instance has no feasible solution while the JSSP has
a feasible solution. This is the case when the time a machine can go without
maintenance is shorter than one of the operations of that machine.

6.2 A Mixed-Integer Programming formulation

The Job Shop Scheduling Problem with scheduled Maintenances can be formu-
lated in Mixed-Integer Programming extending the formulation presented by
Applegate and Cook [7]. Recall the following notation:
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m1

m2

m3

0 5 10 15 20 25

o1

o3

o2

o4

o8

o5

o6

o7

o11

o9

o12

o10

Figure 6.1: Optimal solution of the JSSP instance of table 6.1
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Figure 6.2: Maintenances added into the schedule of figure 6.1
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Figure 6.3: Optimal solution of the JSSP instance of table 6.1 with
maintenances
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Figure 6.4: The schedule of figure 6.3 with maintenances removed
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M Number of machines
N Number of jobs
M = {m1, . . . ,mM} Set of machines
J = {j1, . . . , jN} Set of jobs

pij
Processing time of job jj on machine mi (i = 1, ...,M ,
j = 1, ..., N)

U i
Maximum time that machine mi can work without a
maintenance (i = 1, ...,M)

Di Maintenance time for machine mi (i = 1, ...,M)

(πj(1), . . . , πj(M)) The sequence by which job j should visit the machines
(j = 1, ..., N)

Each maximal set of operations scheduled on a single machine without any
maintenance in between we call a group. Since we have N operations on each
machine, we have at most N groups and at most N − 1 maintenances on each
machine. Let a group be indexed by k ∈ G = {1, . . . , N}.

For the MIP consider the following decision variables:

Z Makespan.
xij Starting time for processing of job j in machine i.

ukij = { 1
0

if job j is included in the k-th group processed on machine i,
otherwise.

ykijl = { 1
0

if job j is processed after job l in the k-th group of machine i,
otherwise.

wki Starting time for the k-th maintenance in machine i.

With these variables a MIP formulation for the JSSPM is the following:

min Z (6.1 a )
s.t. xπj(i)j ≥ xπj(i−1)j + pπj(i−1)j , i ∈ M \ {m1}; j ∈ J (6.1 b )

Z ≥ xπj(M)j + pπj(M)j , j ∈ J (6.1 c )
ÿ

j∈J
ukijpij ≤ Ui, i ∈ M; k ∈ G (6.1 d )

xij ≥ xil + pil − (1 − ykijl) I, i ∈ M; j, l ∈ J ; k ∈ G (6.1 e )
wki ≥ xij + pij − (1 − ukij) I, i ∈ M; j ∈ J ; k ∈ G \ {N} (6.1 f )
xij ≥ wki +Di − (1 − u(k+1)ij) I, i ∈ M; j ∈ J ; k ∈ G \ {N} (6.1 g )

u(k+1)ij ≤ ÿ

l∈J
ukil, i ∈ M; j ∈ J ; k ∈ G \ {N} (6.1 h )

ukij + ukil ≤ 1 + ykijl + ykilj , i ∈ M; j, l ∈ J ; k ∈ G (6.1 i )
ÿ

k∈G
ukij = 1, i ∈ M; j ∈ J (6.1 j )
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xij ≥ 0, i ∈ M; j ∈ J (6.1 k )
ukij ∈ {0, 1}, i ∈ M; j ∈ J ; k ∈ G (6.1 l )
ykijl ∈ {0, 1}, i ∈ M; j, l ∈ J ; k ∈ G (6.1 m)
wki ≥ 0, i ∈ M; k ∈ G \ {N} (6.1 n )

Constraints (b) assure that all operations, except the first operation, of a job
starts only after the previous operation of that job (on another machine) is
finished. Constraints (c) guarantee that the makespan is larger than, in fact
it will be equal to, the finish time of the last operation of the last job to be
completed. Constraints (d) limit the active time for each group on each machine
to the maximum uptime of the machine, so the maximum time a machine can
operate without maintenance is satisfied. In constraints (e–g) I denotes an
arbitrary large number. A save value for I would be a value larger than the
sum of the processing times of all operations and maintenances. Constraints
(e) assure that when job j is processed after job l on the same machine i and
the same group k, job j starts after job l is finished. Constraints (f) assure
that the k-th maintenance of each machine is scheduled after all jobs of group k
are finished on that machine, while constraints (g) assure that all jobs of group
k + 1 on a machine start after the k-th maintenance is finished. Constraints
(h) ensures that if the k-th group for machine i is empty all following groups
are also empty. Constraints (i) guarantee that variable ykijl or ykilj is equal to
1 if in fact job j and job l are both processed in the k-th group on machine i.
Constraints (j) guarantee that the operation of job j on machine i belongs to
exactly one group. Finally, constraints (k–n) are domain constraints.

6.3 Dynamic Programming
To incorporate the maintenances into the DP algorithm for the JSSP we first
have to define the maintenances in a similar way as the operations. Furthermore,
we have to define an ordered sequence of operations and maintenances. Finally,
we have to change the state definition to keep track of the current uptime of
each machine to ensure the principle of optimality.

Let us define the maintenances (or repairs) similar to the set of operations as

R = {R1, . . . , RMˆ(N−1) } ,
where each maintenance Ri is performed of machine mj with j = i (mod M)
as the r i

M s-th maintenance on that machine. This results in a fixed ordering
of the maintenances Ri, Ri+M , . . . , Ri+Mˆ(N−2) for each machine mi. Extend
the definitions of m(¨) and p(¨) for maintenances by defining m(R) as the
machine performing maintenance R and p(R) = Dm(R) as the time needed
for the maintenance. Let T = O ∪ R be the set of tasks, i.e., operations and
maintenances, to be scheduled for an instance of the JSSPM.

Now we define a sequence of tasks similarly to the sequences of operations
for the JSSP, which is ordered when the tasks are ordered according to the
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completion time of each task in a no-idle schedule. Note that in a no-idle schedule
each maintenance will directly follow a task on its machine. This follows directly
from the fact that any task that has to be scheduled before it according to a
precedence relation is always performed on the same machine. Such an ordered
sequence of a schedule representing a complete solution for the JSSPM does not
necessarily contain all possible maintenances R, as this represents the maximal
set of maintenances.

To solve the JSSPM by DP we perform a DP algorithm over the set of all
tasks T . Before we look at the state definition we extend the definitions of ε(S),
η(ςS) and α(ςS , o) to include R as elements of S and possible next tasks t in
the case of α (i.e., α(ςS , t)). As we will see later the definitions of η and α,
will have to be changed slightly further. For each machine there is at most one
maintenance available to be scheduled as the order of the maintenances is fixed.
So, ∣ε(S)∣ ≤ N +M , one operation for each job and one maintenance for each
machine. Since the definition of ε(S) is changed, the length of ~η and ~α is also
increased.

Recall the state definition ξS,~η ?? ~α of proposition 2.7, where still ~η Ă φ. Simi-
larly to the DP algorithm of the JSSP we first create an optimal DP algorithm
without bookkeeping variables and then move ~η to the bookkeeping variables
β. The fact that each job visits each machine exactly once in the general JSSP
is never used in the definitions leading up to proposition 2.7 as well as in its
proof. Actually the DP algorithm for the JSSP also works for instances where
each job can visit each machine an arbitrary number of times, the different jobs
also do not need to have an equal number of operations. Accordingly, with this
state definition all tasks can be optimally scheduled as if it were a regular JSSP
instance with M extra jobs of which all operations have to take place on the
same machine.

Naturally, the feasibility regarding the maximum uptime U is lost. For
two solutions ςS,~η ?? ~α and ς ′

S,~η
?? ~α′ in the same state ξS,~η where ςS,~η ?? ~α u ς ′

S,~η
?? ~α′

(~α u ~α′), all feasible expansions and completions of ς ′ must be dominated by the
same expansion made to ς. However, it is possible that the uptime on a machine
is longer for a completion of ς than it is for the same original completion of ς ′.

To be able to test the feasibility regarding the maximum uptime U we intro-
duce variables ui for each machine mi which represents the maximal processing
time left until a maintenance is required, so for S = ∅ we have ui = U i. When
we combine the variables ui into an array ~u and define u for ~u similar to ~α and
γ using ≥ for each element-wise compare. So we have ~u u ~u′ when all elements
in ~u are greater or equal to their corresponding elements in ~u′. When we add ~u
to γ (γ = {~α, ~u}) we get state definition ξS,~η ?? ~α,~u and we restore the optimality
principle. For two solutions ςS,~η ?? ~α,~u and ς ′

S,~η
?? ~α′,~u′ in the same state ξS,~η where

ςS,~η
?? ~α,~u u ς ′

S,~η
?? ~α′,~u′ (~α u ~α′ and ~u u ~u′), all feasible expansions and completions

of ς ′ are dominated by the same expansion made to ς. The sum of the uptimes
until the next maintenance for each machine in this completion is smaller or
equal to the value in ~u′, corresponding to the machine, otherwise it would not

102



6

6.3 Dynamic Programming

be a feasible completion of ς ′. Since the value in ~u corresponding to the same
machine is as least as high, the maximum uptime is not violated when completing
ς with this completion.

However, we still need a final alteration to the algorithm to be able to find
optimal solutions for the JSSPM. With the current state definition the solution
with the earliest completion time is found for a schedule with exactly N − 1
maintenances per machine. To find the optimal solution for the JSSPM we
simply have to use p(R) = 0 when calculating η(ςS) or α(ςS , R) creating an
expansion ςS,~η ?? ~α,~u�R. Now still all M ˆ (N − 1) maintenances are added to
the schedule, only the maintenances performed after all operations on a machine
are finished have zero time. Note that using p(R) = 0 only depends on the state
variable S.

To improve the running time of the algorithm we can skip the expansion of all
maintenances after all operations on a single machine are performed. When these
expansions are not made, the state space will not be completely filled, since all
solutions in states ξS,~η ?? ~α,~u with S Ě O will not have any feasible expansions. To
find the feasible solution all solutions in such states have to be checked against the
best found solution so far. Furthermore, the entry in ~α and ~u corresponding to
mi can be removed when { o ∈ O \ S ∣ m(o) = i } = ∅, that is when all operations
on mi are scheduled. Now ~α is automatically reduced to Cmax when S Ě O, as
it is with the DP algorithm for the regular JSSP.

The feasibility test for any expansion ςS�o regarding the uptime of a machine
by testing p(o) ≥ um(o) can also be done beforehand by setting η(ςS , o) = 0.
To further improve the running time, the expansions ςS�R with ui = U i for
i = m(R) can pre prohibited, as adding the maintenance will not improve the
allowed remaining processing times for operations. This feasibility check can
also be performed on the previous expansion and we can set η(ςS , R) = 0. Also
we can render any solution infeasible where we have that η(ςS , R) = 0 with
m(R) = i and for all o ∈ { o′ ∈ O \ S ∣ m(o′) = i } we have that p(o) > ui, since
no operation will be able to be scheduled before a maintenance is scheduled and
the maintenance cannot be scheduled in an ordered sequence anymore.

An upper bound on complexity of this DP algorithm can be found along the
same lines as described in section 2.3. For the DP algorithm for the JSSP we
started with —using B instead of U— O(B(B +N)MN2MN), we could limit

the number of expansions to N , we could reduce by the factor ( 2M

M+1)N and

we found B = O(pmax
N√

N
). For the JSSPM we have MN +M(N − 1) tasks and

each solution can be expanded with at most N +M tasks. So we start with
O(B(B +N +M)(M +N)2M(2N−1)). We have M extra precedence relations of

lengthN−1 for the maintenances giving a reduction factor of ( 2N−1

N )M next to the

still existing ( 2M

M+1)N . This results in O(B(B +N +M)(M +N)NM(M + 1)N).
For B we can create an antichain for the set of non-dominating different

values of γ = {~α, ~u} similar to section 2.3. In γ we have N values of at most
pmax and M values of at most Umax, where Umax = maxmi∈M U i. If we take
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Tmax = max{pmax, Umax} we can, using the intermezzo in section 2.3, conclude
that

B ≤ pmax ( 2
π
) 1

2 (Tmax + 1)N+M√
1
3(N +M)(Tmax

2 + 2Tmax) = O(Tmax
N+M√

N +M ) .
From this we obtain the following complexity for the DP algorithm for the
JSSPM:

O(Tmax
N+M√

N +M (Tmax
N+M√

N +M +N +M) (M +N)NM(M + 1)N)
O((Tmax

2(N+M)
N +M + (N +M)Tmax

N+M√
N +M ) (M +N)NM(M + 1)N)

O((Tmax
2(N+M) + (N +M)√N +MTmax

N+M)NM(M + 1)N)
O(Tmax

2(N+M)NM(M + 1)N) .

6.4 Bounding for the JSSPM
To limit the size of the DP state space for the JSSPM effectively the bounding
described in section 5.1.1, although it can be used, should be improved. In
this section we describe the parallel head–tail adjustments of Brinkkötter and
Brucker [21] with alterations to incorporate maintenances, following the lines of
Brinkkötter and Brucker [20]

To each machine k we add N k maintenance operations which are sequenced
in a fixed order using precedence relations. These operations with their relations
can be seen as an extra job only to be performed on that particular machine.
Furthermore, we ensure that between each pair of consecutive maintenances on
a machine at least one operation could possibly be planned.

Let Ik be the set of operations on machine k. Let N k be a lower bound on
the number of maintenances required to schedule all operations in Ik and let Ĭk
be a set of N k maintenances. Define Īk = Ik ∪ Ĭk. See the intermezzo below for
a possible way to determine N k.

Intermezzo: A lower bound for the one-dimensional bin
packing problem

The minimal number of maintenances needed between a set of operations
can be seen as a one-dimensional bin packing problem. The set of
operations to be planned represent indivisible items, with size equal to
their respective processing times, that are to be put in bins of size equal
to the maximal uptime U. The goal is to minimize the number of bins.
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Since each bin represents the maximal uptime, maintenances are needed
to separate these bins, thus the minimum number of maintenances needed
is equal to the number of bins needed minus 1.

In Martello and Toth [83, chap. 8.3] multiple lower bounds on the
one-dimensional bin packing are given. As an example we briefly show
two of these bounds.

Let I be the set of operations that have to be planned. The first,
straightforward, lower bound L1 can be found under the assumption
that any item can be arbitrary split into two bins. By filling all bins
fully we get

L1 =
Rř

o∈I po
U

V
.

For the second lower bound L2 we create three disjunct subsets J1,
J2 and J3 of I according to an integral parameter α ∈ [0, U/2].

J1 = {o ∈ I ∣ po > U − α}
J2 = {o ∈ I ∣ U − α ≥ po > U/2}
J3 = {o ∈ I ∣ U/2 ≥ po ≥ α}

Because sets J1 and J2 fill more than half a bin items from these sets
cannot be combined. Items from set J3 can only be combined with
J2 and J3, if the total size of these items is larger than the remaining
capacity of the bins that are filled by items of J2 the logic of L1 is applied
to the remaining size. This results in a bound depending on α of

L2(α) = ∣J1∣ + ∣J2∣ + max
⎧⎪⎪⎨⎪⎪⎩0,

Sř
o∈J3

po − (∣J2∣U − ř
o∈J2

po)
U

W⎫⎪⎪⎬⎪⎪⎭ .
Finally, the second bound becomes

L2 = max {L2(α) ∣ 0 ≤ α ≤ U/2} .
Note that L2 dominates L1 as L2(0) = ∣J2∣ + max {0, L1 − ∣J2∣}.

First we take a look at the operations on a single machine. Let Uk and Dk be
the maximum uptime and downtime on this machine, respectively.

For each operation o ∈ Īk we create a head ro and tail qo. The corresponding
head-tail problem is to find a schedule such that each operation does not start
before its head, that maximum uptime between maintenances of length Dk does
not exceed Uk and for which max

o∈Ik

{Co + qo} is minimal, where Co is the finish
time of operation o.

However, as we estimate the number of maintenances upfront we modify
the problem slightly. We do not require that the maximal uptime between
maintenances is Dk, as it is possible that there is no feasible solution with just
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N k maintenances since this is a lower bound. We just require that there is a
normal operation between each maintenance as well as before the first and after
the last maintenance. The corresponding head-tail problem is now to find a
schedule such that each operation does not start before its head, before and after
each maintenance of length Dk at least a normal operation is scheduled and for
which max

o∈Ik

{Co + qo} is minimal.
The preemptive variant of this problem can be solved by constructing a

schedule from left to right by applying the same JPS scheduling rule as used in
section 5.1.1:

At time t schedule an available operation with the largest tail, until this
operation is finished or the time defined by the smallest head with r > t.

We call a schedule constructed in this way a Jackson’s preemptive schedule with
scheduled Maintenances (JPSM). The only difference with the regular JPS is
the inclusion of the minimal set of maintenances Ĭk in the JPSM.

Now we apply the same rules briefly described in section 5.1.1. Consider a
partial schedule created following the rules for the JPSM at time t = rw given
by the head of some operation w ∈ Īk. Let again p+w be the remaining processing
time for operation w ∈ Īk at time t. Let UB be an upper bound on the optimal
value of the non-preemptive head-tail problem. If for two operations w, o ∈ Īk,
o ≠ w, we have that

rw + pw + po + qo > UB, (6.2)

operation w cannot start before operation o. So o ≺ w, and we may set rw to:

rw = max {rw, ro + po} .
Another condition we can use to increase the value of rw is the following. If

we have a subset Yk Ă Īk with Yk Ď {o ∈ Īk ∣ p+o > 0} \ {w} the condition

rw + pw + ÿ

o∈Yk

p+o + min
o∈Yk

qo > UB (6.3)

holds, operation w cannot start before rw + 1 in any optimal schedule. This
can be seen as follows: Assume that we have an optimal schedule ψ in which
operation w starts at rw. Then using exchange arguments we can transform
ψ into a schedule ψ′ in which the operations of ψ′ are performed on the same
times as the JPSM until time rw without increasing max

o∈Īk

{Co + qo}. Since UB is

an upper bound on the optimal value of max
o∈Īk

{Co + qo} for ψ′ must hold that

rw + pw + ÿ

o∈Yk

p+o + min
o∈Yk

qo ≤ UB

which contradicts inequality (6.3). We can even set

rw = rw + ÿ

o∈Yk

p+o .
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This can be seen as follows: Schedule the remainder p+o in unit steps of all
operations o in Yk disregarding their heads ro following the rules for the JSSPM in
order of decreasing tail values qo. During this process inequality (6.3) continuously
holds before scheduling any unit step. Also operation w cannot start before all
operations in Yk are finished, which may further delay the head rw of operation
w. Note that inequality (6.2) is implied by inequality (6.3) when po = p+o , so
we consider inequality (6.2) after inequality (6.3) and only for operations where
po > p+o .

To find the maximal set K∗
w satisfying inequality (6.3) we use the following

procedure.

1. Let K+
w = {o ∈ Īk ∣ p+o > 0} \ {w}. Sort the operations in K+

w according to
non-decreasing values of qo.

2. With respect to this sorted sequence let ow ∈ K+
w be the first operation

satisfying
rw + pw + ÿ

o∈K+

w
qo≥qow

p+o + qow
> UB

3. Set
K∗
w = {o ∈ K+

w ∣ qo ≥ qow
} .

Now for K∗
w the condition in inequality (6.3) is clearly satisfied. Furthermore, if

Yk is a set satisfying inequality (6.3), let qYk
= mino∈Yk

qo, then

Yk = {o ∈ Yk ∣ qo ≥ qYk
} Ď {o ∈ K+

w ∣ qo ≥ qYk
} Ď K∗

w = {o ∈ K+
w ∣ qo ≥ qow

} ,
due to the definition of ow. So K∗

w is the maximal set satisfying inequality (6.3).
It is possible that the definitions of K∗ define a cyclic relation, that is o ∈ K∗

w

and w ∈ K∗
o . In that case operations o and w should wait indefinitely for each

other and the provided upper bound is not a valid upper bound.
Finally, regarding the maintenances we can increase the heads of the main-

tenances by using the following. Let o, w ∈ Ĭk and without loss of generality
assume that o ≺ w. We set hmin

k = ro + po which is the first possible end of
maintenance o, so hmin

k is a lower bound on the start of maintenance w. However,
since there should be at least one operation v ∈ Ik such that it fits between
maintenances o and w. Let Fk be the set of normal operations that fit between
these maintenances and can be scheduled after hmin

k , i.e.,

Fk = {v ∈ Ik ∣ max {hmin
k , rv} + pv + qv ≤ UB} .

Now we can set hmax
k as the first time any operation scheduled after maintenance

o can finish to
hmax
k = min

v∈Fk

{max {hmin
k , rv} + pv} .

So we can set the head of maintenance w to rw = max {rw, hmax
k }. To update

the head for the first maintenance we can set hmin
k = 0.
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6.4.1 Updating heads and tails on a single machine
In this section we present an example of the procedure that dynamically updates
the heads and tails on a single machine. We update the heads dynamically, i.e.,
we define r̃o as the temporary head which is updated during a single creation of
a JPSM. First, r̃o is initialized with ro, it is updated and fixed when t = r̃o.

Consider the following example with a given upper bound of UB = 14 and a
maximum uptime U = 3 and a downtime D = 2.

Operation po ro qo

o1 2 2 1
o2 2 3 4
o3 2 3 8

Maintenance po ro qo

R1 2 0 0
R2 2 0 0

It is easy to see that there are at least 2 maintenances needed, which are
already given in the table as R1 and R2.

First, we construct the JPSM forward. At time t = 0, we have no operation
available and also the time of the first maintenance cannot be determined as no
head is fixed yet. At t = 2, o1 becomes available we conclude that K∗

o1
= ∅ so we

start with one time unit of operation o1. Furthermore, as we have fixed r̃o1 = 2
we set hmax

k = 5. At t = 3, we conclude that K∗
o2

= {3} and K∗
o3

= ∅, so r̃o3 = 3,
o3 ≺ o2 and we schedule o3. At t = 5, we conclude that r̃R1 = 5 and K∗

o2
= ∅, so

we set hmax
k = 9 and schedule operation o2. Finally at t = 7, t = 8 and t = 10, we

schedule the remainder of o1, R1 and R2, respectively. The resulting schedule of
the JPSM and the schedules of the following iterations are given in figure 6.5.
The new set of heads and tails are now

Operation po ro qo

o1 2 2 1
o2 2 5 4
o3 2 3 8

Maintenance po ro qo

R1 2 5 0
R2 2 9 0

Second, we reverse the roles of the heads and tails and create the JPSM
backwards. At time t = 14, again we have no operation available and also the
time of the first maintenance cannot be determined, since no head is fixed yet.
At time t = 13, we conclude that K∗

o1
= ∅, set q̃o1 = 1 and hmax

k = 11 and schedule

JPSM backward

JPSM forward

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

o1 o3 o2 o1 R1 R2

o3 R1 o2 R2 o1

Figure 6.5: JPSM forward and backward
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o1. At time t = 11, we can set q̃R2 = 3, hmax
k = 7 and schedule R2 for a single time

unit. At time t = 10, we conclude that K∗
o2

= {R2} and schedule the remainder
of R2. At time t = 9, we set q̃o2 = 5 and schedule o2. At time t = 7, we set
q̃R1 = 7 and schedule one unit from R1. At time t = 6, we can conclude using
inequality (6.2) that o3 ≺ R1, so we can set q̃o3 = 9 and schedule the remainder
of R1. At time t = 5, we schedule o3. In figure 6.5 the JSSPM backward is also
shown. The new set of heads and tails are now

Operation po ro qo

o1 2 2 1
o2 2 5 5
o3 2 3 9

Maintenance po ro qo

R1 2 5 7
R2 2 9 3

Finally, another forward calculation of JPSM will set ro1 = 11 and ro2 = 7
but the schedule does not change from the last backward iteration. Now all
operations are fixed and further iterations give no further changes.

6.4.2 Updating heads and tails on all machines
Using the algorithms described in Brinkkötter and Brucker [20] we can update
the heads on all machines simultaneously. In this section we describe how to
update the heads and tails on all machines. The algorithms to update the heads
are slightly modified versions of the ones in [20].

When we consider the JSSPM we have a set of operations Īk for each machine
k (k = 1, . . . ,M). We apply the JPSM and update the heads for each of these
sets simultaneously. Note that we have precedence relations from the jobs
between operations of different sets Īk. If we increase the head of operation o
and operation w is a successor of o (o ≺ w) we can set the head of operation w
to rw = max{rw, ro + po}. Similarly we can update the tail of o when we update
the tail of w.

Algorithm 6.1 gives a global overview of the global algorithm to update the
heads and tails of all operations.

In the following functions a few new variables are used. Variable LBk is the
lower bound for the head-tail problem of the set of all operations Īk on machine
k, it is defined as

LBk = max
o∈Īk

{Co + qo} .
This finally gives LB = maxMk=1 LBk as lower bound for the complete JSSPM.

Furthermore, we have tk and treqk as the current local time and the next relevant
local time on machine k. We define r̃o as the head of operation o that is updated
to distinguish it from the given head ro before the heads are updated. Finally
M+ is the set of indexes of all machines which have not yet finished all their
operations.

The function UpdateHeads in algorithm 6.2 calculates the improved lower
bound and updates the heads for all operations. This is done by applying
the JPSM to all machines simultaneously and updating the heads accordingly.
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Algorithm 6.1 Iteratively update heads and tails
Input: An upper bound UB
Output: A new lower bound LB

LB = 0

LB = max{LB,UpdateHeads(UB)}
Switch roles of heads and tails

repeat
LB = max{LB,UpdateHeads(UB)}
Switch roles of heads and tails

until No heads and tails are updated

return LB

First the data and the state for each machine are initialized by InitData
(algorithm 6.6) and UpdateState (algorithm 6.7). Then, iteratively a single
step for the JPSM is performed by JPSMstep (algorithm 6.3) on the machine
with the lowest relevant local time, i.e., a machine mk for with

treqk = min
k′∈M+

treqk′ .

Finally in function SetHeads (algorithm 6.8) the heads of all normal operations
are set to their newly obtained values.

The function JPSMstep in algorithm 6.3 carries out a single step of the
JPSM on a machinemk, updates the head relevant for this step including possibly
heads of successors and it updates tk and treqk . Before we examine JPSMstep
in detail we need to introduce a bit more notation. To allow uniform formulation
of the following functions we introduce a dummy operation ak for each machine
mk with pak

= ∞, rak
= 0 and qak

= −∞. This operation ak will be processed
on machine mk when no other operation o ∈ Īk is available, i.e., operation ak
fills the idle time on machine mk. hmin

k is the first possible finish time of the
last maintenance made available on machine k and hmax

k is the first possible
time any normal operation can finish that is started on or after hmin

k . hmax
k is

a lower bound on the head of the next maintenance to be made available on
machine k. Let Indegreeo be the number of direct predecessors of o in the
normal operations O and maintenances R that have not yet become available
(see the definition of Ak below) for the JPSM-procedures at the current local
time of their respective machines. The direct predecessors of o is the direct
predecessor according to the job j(o) and operations on the same machine for
which a precedence relation is found during earlier passes of UpdateHeads.
During DP these precedence relations are kept locally on the partial solutions
and preserved during the expansions, see section 6.4.3.

For each machine mk we define the following sets:
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Algorithm 6.2 Update heads of normal operations
Input: An upper bound UB
Output: A new lower bound LB

UpdateHeads(UB)
LB = 0

for all k ∈ M do
InitData(k)

for all k ∈ M do
UpdateState(k,UB)

M+ = {1, . . . ,M}
while M+ ≠ ∅ do

choose k ∈ M+ such that treqk = mink′∈M+ treqk′

if treqk > UB then
LB = UB + 1
break

JPSMstep(k,UB)
if no i ∈ Īk with p+k > 0 exists then

M+ = M+ − {k}
LB = max {LB,LBk}
if LB > UB then

LB = UB + 1
break

for all k ∈ M do
SetHeads(k)

return LB

Ak = {o ∈ Ī ∣ Indegreeo = 0, {w ∈ K∗
o ∣ p+w > 0} = ∅, r̃o < tk, p+o > 0} ∪ {ak}

This is the set of operations of machinemk which are available for processing
at current time tk.

Uk = {o ∈ Ī ∣ Indegreeo = 0, tk < r̃o}
This the set of operations which are unavailable for processing on machine
mk at current time tk.

Dk = {o ∈ Ī ∣ Indegreeo = 0, {w ∈ K∗
o ∣ p+w > 0} ≠ ∅, tk = r̃o} ∪{o ∈ Ĭ ∣ Indegreeo = 0, tk < hmax

k , tk = r̃o}
This is the set of operations o which are delayed until all operations in K∗

o

are finished. As long as o ∈ Dk, r̃or̃o is conceptually set to tk, since this is
certainly a valid head for operation o.
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Algorithm 6.3 A single step in the JPSM procedure
Input: A machine index k

An upper bound UB

JPSMstep(k,UB)
p+o∗

k
= p+o∗

k
− (treqk − tk)

tk = treqk
if p+o∗

k
= 0 then

Co∗
k
= tk

LBk = max {LBk, Co∗
k
+ qo∗

k
}

Ak = Ak − {o∗k}
if no o ∈ Īk with p+o > 0 exists then

return

for all o ∈ Dk with {o ∈ K∗
o ∣ p+o > 0} = ∅ do

Dk = Dk − {o}
TryDelay(k, o,UB)

UpdateState(k,UB)
return

We define operation o∗k ∈ Ak as the operation which is chosen to be processed at
time tk on machine mk.

First JPSMstep processes operation o∗k as long as possible, i.e., until it
finishes or the next relevant time treqk is reached. When the operation o is
finished it sets its finish time Co, updates the lower bound, checks wether delayed
operations have all their predecessors planned, and then calls the function
TryDelay (algorithm 6.4) which tries to increase the head of an operation
and propagates this head when it is definitely set and made available. Then
UpdateState (algorithm 6.7) is called to check if further operations be made
available and select a new operation o∗k and update treqk .

The function TryDelay in algorithm 6.4 is applied to an operation o of
which the head will be at least equal to the current time on the machine, i.e.,
r̃o ≥ tk. If the head is equal to the current time it tries to increase the current
head r̃o by first checking if the condition in inequality (6.3) applies. In this
case o is added to Dk. A maintenance is delayed when its currently determined
earliest possible start time is larger than the current time hmax

k > tk. Otherwise
the condition in inequality (6.2) is checked, and if it applies, then r̃o is updated
and the operation o is added to Uk. When none of the conditions are applicable
o is added to Ak and r̃o is fixed and the heads of its successors are updated by
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Algorithm 6.4 Try to delay an operation
Input: A machine index k

An operation o
An upper bound UB

TryDelay(k, o,UB)
let K∗

o Ă Īk be the maximal set satisfying inequality (6.3)
if K∗

o ≠ ∅ then
Dk = Dk ∪ {o}
return

if o ∈ Ĭk and hmax
k > tk and hmin

k <∞ then
Dk = Dk ∪ {o}
return

let Qk be a set of operations w ∈ Ak with p+w < pw and r̃w + pw > tk
if Qk ≠ ∅ then

choose w ∈ Qk such that pw + qw = maxw′∈Qk
{pw′ + qw′}

if tk + po + pw + qw > UB then
r̃o = max {r̃o, r̃w + pw}
Uk = Uk ∪ {o}
return

r̃o = tk
Ak = Ak ∪ {o}
Propagate(k, o)

the function Propagate.
The Propagate function in algorithm 6.5 is called on an operation o when

it is just made available in TryDelay. It propagates the head r̃o of operation
o to its direct successors and if it is the last blocking predecessor it adds them
to U of their respective machine and updates treq of that machine. Recall that
m(o) gives the machine of operation o and we define Succo and Predo as the
set of all predecessors and successors of o, respectively. If o ∈ Ĭk the values of
hmin
k and hmax

k are updated. When there are no maintenances left they are set
to ∞ otherwise all available and fully scheduled normal operations are used to
determine hmax

k . If o ∈ Ik the value of hmax
k is updated when o can finish before

hmax
k .
Now we look at the initializing functions InitData in algorithm 6.6 and

UpdateState in algorithm 6.7.
InitData initializes all basic data for machine k and sets the current time

to 0. UpdateState considers all operations of machine k without a direct
predecessor and their head equal to the current time and tries to increase its head
using TryDelay. The same holds for a delayed maintenance when tk = hmax

k .
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Algorithm 6.5 Propagate an finalized head
Input: A machine index k

An operation o

Propagate(k, o)
for all w ∈ Succo do

r̃w = max {r̃w, tk + po}
Indegreeo = Indegreeo − 1
if Indegreeo = 0 then

Um(w) = Um(w) ∪ {w}
if m(w) ≠ k and r̃w < treq

m(w) then
treq
m(w) = r̃w

if o ∈ Ĭk then
hmin
k = hmax

k =∞
if Succo ∩ Ĭk ≠ ∅ then

hmin
k = tk + po

let Rk be the set (Ak ∩ Ik) ∪ {v ∈ Ik ∣ p+v = 0}
let Fk be the set {w ∈ Rk ∣ hmin

k + pw + qw ≤ UB}
if Fk ≠ ∅ then

hmax
k = hmin

k + minw∈Fk
pw

if o ∈ Ik then
hmax
k = min {hmax

k ,max {hmin
k , tk} + qo}

return

Algorithm 6.6 Initializes data on a machine
Input: A machine index k

InitData(k)
for all o ∈ Ī do

p+o = po
Indegreeo = ∣Predo∣
K∗
o = ∅

r̃o = ro
Uk = {o ∈ Ī ∣ Indegreeo = 0}
Ak = {ak}
Dk = ∅
tk = treqk = LBk = 0
hmin
k = hmax

k =∞
return
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6.4 Bounding for the JSSPM

Algorithm 6.7 Updates the state on a machine
Input: A machine index k

An upper bound UB

UpdateState(k)
for all o ∈ Uk with r̃o = tk do

Uk = Uk − {o}
TryDelay(k, o,UB)

if hmax
k = tk then
hmin
k = hmax

k =∞
for o ∈ Dk ∩ Ĭ do

Dk = Dk − {o}
TryDelay(k, o,UB)

choose o∗k ∈ Ak such that qo∗
k
= maxo∈Ak

qo

treqk = min {tk + p+o∗
k
, mino∈Uk

r̃o, h
max
k }

Algorithm 6.8 Sets the heads of the operations to the new obtained heads
Input: A machine index k

SetHeads(k)
for all o ∈ I do

ro = r̃o
return

If no improvement is possible the operation is made available in TryDelay.
Finally the operation to be processed (o∗k) is selected and treqk is set.

Note that when no operation is available dummy operation ak is selected for
processing. If it is also the case that Uk = ∅, treqk is set to ∞, if no inconsistency
is detected it will be shortened when a job is added to Uk due to the fact that
its final predecessor finishes.

Finally the heads are updated by SetHeads function in algorithm 6.8.

6.4.3 Dynamic bounding for the JSSPM
To incorporate this bounding into DP we update the heads and tails for each
partial solution. Conceptually we can ignore all scheduled operations and
maintenances and can use the left uptime u and the remaining operations for
each machine to determine a possible better lower bound N k for the remaining
maintenances. The remaining operations can be derived from S and the values of
~u can be employed to calculate the used uptime Uk − u, which can be seen as an
extra operation that will be included to determine N k. As with the bound for the
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JSSP we can initialize the heads of the remaining operations to α(ςS , o) − p(o).
Finally, the values of u are also used to initialize hmin

k and hmax
k for the first

iteration of the forward JPSM. If u = Uk for a machine k, hmin
k is initialized as

normal, the processing conditions of the machine are fully restored, as in the
beginning of the planning period. However, when a machine is not fresh, u < Uk
for that machine, hmin

k and hmax
k are set to 0 as the maintenance can be planned

immediately.
During the bounding procedure precedence relations, specific to a partial

solution, are generated. However, precedence relations regarding maintenances
cannot be used during DP as the number of maintenances used by the bounding is
an estimate and the maintenances used during bounding cannot be mapped to the
maintenances scheduled by DP. Although the heads and tails can be calculated
based on a state, in practice it is more convenient to save the calculated heads
and tails with the partial solutions, they can be seen as bookkeeping variables
β. As with the precedence relations the heads and tails cannot be saved for
maintenances for the same reasoning.

6.5 JSSPM instances
For the Job Shop Scheduling Problem with scheduled Maintenances there are no
instances known in the literature. To obtain multiple problem instances for the
JSSPM we describe here a set of possible conversions of a regular instance for
the JSSP to an instance of the JSSPM.

For the JSSPM we have to come up with two numbers per machine i, a
maximum uptime without maintenance U i and the duration of the maintenance
downtime Di. For an instance to have a feasible solution the maximum uptime
for a machine should be at least as long as the longest operation on that machine.
For both U i andDi we base its value on one of two properties of the original JSSP
instance. The maximum duration of an operation or the sum of the duration of
the operations on a machine.

Let us define these values first. Let Si be the sum of the duration all
operations on machine i, and let S be the maximum of Si over all machines. Let
Mi be the maximum of the durations of all operations on machine i, and let M
be the maximum of Mi over all machines, that is the maximum duration of any
operation. Thus

Si = ÿ

o∈O∣m(o)=i
p(o)

S = max
i∈M Si

Mi = max
o∈O∣m(o)=i p(o)

M = max
i∈M Mi = max

o∈O p(o)
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6.5 JSSPM instances

Now we create the instances as follows. For both uptime U and downtime D
we determine a factor fU and fD and we multiply by this factor for each machine
with Si, S, Mi or M , we call these four possibilities:

nh sum Non-homogeneous sum (Si)
h sum Homogeneous sum (S)
nh max Non-homogeneous max (Mi)
h max Homogeneous max (M)

We take the ceiling of the resulting value. Furthermore, the minimum value for
Di is set to 1 and the minimum value for U i is set toMi for the non-homogeneous
variant and to M for the homogeneous variant independent of the value of fU
and fD. Naturally, fU < 1 would result in fU = 1 when using one of the max
variants for U and fU ≥ 1 would result in the original JSSP instance, since all
operations can be done without maintenance.

This leads to the following formulas:

U i =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max{Mi, rfUSis} nh sum
max{M, rfUSs} n sum
max{Mi, rfUMis} nh max
max{M, rfUM s} n max

Di =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max{1, rfDSis} nh sum
max{1, rfDSs} n sum
max{1, rfDMis} nh max
max{1, rfDM s} n max

We describe an instance of the JSSPM as follows ft06|nh|sum| 1
3 |h|max| 3

4 ,
where the first element is the original JSSP instance, parts 2–4 and 5–7 describe
the (non–)homogeneity, sum or max and the factor for uptime U and downtime
D, respectively.

We generated 288 instances using all possible combinations given in table 6.2.

Original Instance Uptime U Downtime D
• ft06
• la01
• la02

• la03
• la04
• la05

• h/nh|max|1
• h/nh|max| 32
• h/nh|sum| 13
• h/nh|sum| 23

• h/nh|max|1
• h/nh|max| 13
• h/nh|sum| 15

Table 6.2: Combinations to generate 288 JSSPM instances

117



6

The Job Shop Scheduling Problem with Scheduled Maintenances

6.6 Comparing DP to MIP

We used the DP algorithm described in section 6.3 to find solutions for these
instances. We started without setting any bound and expanding only 1000
partial solutions in each stage by setting H = 1000. To select the most promising
solutions to expand the lower bound on the completion cost, as described in
section 6.4, is used, similar to the selection done for the JSSP. When the widthH
did not limit the state space we found the optimal solution, or when no solution
is found the previous found solution is proven to be optimal. If a solution was
found but width H was limitative we repeated the algorithm, setting a new upper
bound equal to the value of the found solution minus one. When no solution is
found, width H is increased by a factor 10 until at most H = 106. However, when
no solution was found in the first run with no bound a fictive bound of 3000 was
used in the next run. The total results are given in table A.5 (pages 142–151).

For the 46 instances where the DP algorithm could not prove optimality
we used the procedure described in section 5.2.4 to find a lower bound. As
start value we used the best known value from the first procedure minus 400.
The state space is bounded with width H = 105 for these runs. Results of this
procedure can be found in table A.6 (page 152).

To compare the performance of our DP algorithm we solved the MIP model
described section 6.2 in using Gurobi 5.6.3. The following parameters where
given to the solver to solve the MIP model for all instances, using a time limit
of 2 hours:

TimeLimit 7200
Method 2
Presolve 2
GomoryPasses 1

These parameters are found by running the automatic configuration tool of
Gurobi on the ft06 instances for 2 hours. We combined the parameters of the
best parameter sets returned by the tuning tool which proved to be even better
according to the tuning tool. In table A.7 these results are combined with the
summary of the results from the DP algorithm given in tables A.5 and A.6. Note
that Gurobi was able to use both CPU cores while DP only used a single core.

We can see that the small ft06 instances are all solved by MIP and DP,
although DP outperforms MIP on all but 4 of the 48 instances, even when we
look at the first time MIP found the optimal solution. For the la instances we
see that DP finds the optimal solution for 194 of the 240 instances while using
the MIP model only the optimal value for 54 of these 194 instances is found
and for only 3 the optimality was proven. We should note that for 12 of these
instances DP used more than 7200 seconds but never more than 10000.

For most of the remaining 46 instances, DP algorithm spent more than 7200
or even 14400 seconds. For one of these instances optimality was proven using
the MIP, for 12 other instances a better solution was found by solving the MIP

118



6

6.6 Comparing DP to MIP

than by applying the DP algorithm. For two of these 12 instances also a better
lower bound was found using the MIP.

We clearly see that the instances where the uptime is defined by h/nh|sum| 13
(see table 6.2) seem to be harder to solve than the instances which are defined by
h/nh|max|1, h/nh|max| 32 or h/nh|sum| 23 . We suspect that the instances where
the uptime is defined by h/nh|max|1, h/nh|max| 32 are easier because between
almost all operations a maintenance seems to be needed and for h/nh|sum| 23
only a single maintenance is needed.
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Concluding Remarks

Dynamic Programming over sets exists for over half a century, with the Dynamic
Programming algorithm for the Traveling Salesman Problem as its prime example.
Although Dynamic Programming is often viewed as impractical to solve NP-hard
problems, it still provides the algorithm with the lowest time complexity to solve
the Traveling Salesman Problem.

In this dissertation we extend this algorithm to the Vehicle Routing Problem
and to the Job Shop Scheduling Problem. The extension of the Dynamic
Programming algorithm for the Traveling Salesman Problem to the Vehicle
Routing Problem is fairly straightforward, since the Vehicle Routing Problem
is very similar to the Traveling Salesman Problem. The extension to the Job
Shop Scheduling Problem is more complicated, since the Job Shop Scheduling
Problem is a min–max problem, in contrast to the min–sum objective of the
Vehicle Routing Problem and Traveling Salesman Problem. We show how to
use the principle of Dynamic Programming over sets to solve such a min–max
objective. Dynamic Programming for the Job Shop Scheduling Problem offers
currently, up to our knowledge, the algorithm with the lowest time complexity
to solve the Job Shop Scheduling Problem.

For these problems we show how the Dynamic Programming algorithm may
be altered to solve extensions to the problem, while keeping the guarantee to find
the optimal solution. For the Vehicle Routing Problem we illustrate this for a
large range of known and lesser known extensions. For the Job Shop Scheduling
Problem we show in detail how to add maintenance creating a new problem, the
Job Shop Scheduling Problem with scheduled Maintenances.

For this new problem, the Job Shop Scheduling Problem with scheduled
Maintenances, we created a new Mixed-Integer Programming formulation to
be able to evaluate our Dynamic Programming algorithm. As this is a new
problem, not yet found in the literature, we created a general way to use existing
Job Shop Scheduling Problem benchmark instances to create new instances of
the Job Shop Scheduling Problem with scheduled Maintenances with different
characteristics. This procedure is limited, in the sense that the same proportional
relation between the operations on a machine and the maintenance plan of the
machine exists. However, it can be used to create a diverse set of benchmark
instances of the Job Shop Scheduling Problem with scheduled Maintenances
based on existing benchmark instances of the Job Shop Scheduling Problem.
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Our computational results show that the Dynamic Programming algorithm is
very competitive compared to a state of the art Mixed-Integer Programming
solver applied to our Mixed-Integer Programming formulation.

Although Dynamic Programming provides the algorithm with the best run-
time complexity known to solve these problems to optimality, from a practical
point of view it is hard to use as the time complexity, as well as the memory
complexity, are exponential. To increase the practicality of the Dynamic Pro-
gramming algorithms, we show how to, on one hand add bounding to these
Dynamic Programming algorithms, preserving the optimality, and on the other
hand how Dynamic Programming algorithms can be used as a heuristic. Al-
though this works quite well, it is largely dependent on a good lower bound on,
or an estimation of, the cost of all possible completions of the current partial
solution, respectively. With a good estimate on the completion for each partial
solution, the Dynamic Programming algorithm is able to provide good solutions,
while using only a very narrow state space. Although, similar in concept to beam
search applied to the exploration of the solution space of a problem, our ideas
apply to the state space of a Dynamic Programming algorithm.

We use a Dynamic Programming algorithm as basis to create an algorithm
which finds all optimal solutions of a given problem. As far as we know, finding
all optimal solutions to the optimization problems described in this dissertation,
has not yet been considered. We notice that the number of optimal solutions
for small Job Shop Scheduling Problem benchmark instances can greatly differ.
We could not find a relation between the number of optimal solutions and the
observed effort to find a single optimal solution.

Although we achieved nice results with our Dynamic Programming algorithms
for the Vehicle Routing Problem and the Job Shop Scheduling Problem there
are still plenty of areas where it may be improved. For example, the Dynamic
Programming algorithms can be used inside a larger algorithm framework, other
bounding algorithms can be used or developed, and it may be possible to
change the Dynamic Programming algorithm itself to achieve a better practical
performance.

The fact that a lot of different extensions can be incorporated into the
Dynamic Programming algorithm for the Vehicle Routing Problem makes it a
general framework to solve rich Vehicle Routing Problems. We think that a good,
and fast, lower bound on the cost can greatly help to improve the quality of the
solutions found by heuristic versions of the Dynamic Programming algorithm.
Also, using Dynamic Programming as pricing instrument in a column generation
framework can provide a flexible way to solve rich Vehicle Routing Problems.
The state space of the Dynamic Programming algorithm is limited by the fact
that Dynamic Programming is used only to create a single route in this case. We
can limit the Dynamic Programming state space further by bounding or using a
heuristic. Than, given a good lower bound or estimator, this may prove to be a
powerful technique to solve rich Vehicle Routing Problems.

For the Job Shop Scheduling Problem we created a Dynamic Programming
algorithm for a min–max optimization problem. It may be possible to use the
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basis of this algorithm to create Dynamic Programming algorithms for other
min–max optimization problems.

Finally, in this dissertation the Dynamic Programming algorithms are exe-
cuted stage by stage. It may be worth to try to expand the partial solutions
using a less predefined pattern. For example, expand the partial solution with
the lowest lower bound on cost of any completion, disregarding the stage of
the partial solution. This is similar to best–first–search in branch and bound.
This may result in more effort in the beginning of the state space, compared
to limiting the number of expanded solutions, but preserves the guarantee of
optimality. The same state space would be evaluated as running the Dynamic
Programming algorithm with the optimal value as upper-bound.

Furthermore, when a partial solution has a good lower bound, it may be
the case that it can be expanded keeping the same lower bound for one of the
expansions. This would create a kind of depth–first–search within the Dynamic
Programming state space. The risk is that partial solutions get expanded which
would otherwise be dominated. Therefore, a tradeoff may have to be found in
this case.

It may be that it is possible to prevent the expansion of partial solutions that
would otherwise be dominated. For example, the bound used in this dissertation
for the Job Shop Scheduling Problem, which depends on the state variables
used to compare for domination, may prevent the extension of partial solutions
that would be dominated. This is a result of the fact that the lower bound of
a dominated solution cannot be lower than the lower bound of its dominating
solution. A downside for the Job Shop Scheduling Problem is that the quality of
the bound used in this dissertation depends on the given upper bound. Also,
when a solution is found and hence a new upper bound becomes available then
the lower bounds of all not yet expanded solutions should be recalculated.

Another idea is to start Dynamic Programming using a lower bound of the
whole problem as an upper bound and expand all partial solutions until all of
them would be bounded, i. e., the lower bound on each partial solution is higher
than the used upper bound. After that, the upper bound should be increased by
one and the current lower bounds of all non-expanded partial solutions should
be updated. This process can be repeated until the optimal solution is found.

Concluding, there are still numerous interesting research directions, which
may lead to further improvements of the algorithms described in this dissertation.
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Appendix A

Computational Results

All results are generated on a machine with a dual core 3.00 Ghz CPU, with
16GB of memory. It has a 64-bit version of windows 7 installed. All of our own
implementations are written in C++ and all MIP/LP calculations are done with
Gurobi 5.6.3.

Overview of tables

Vehicle Routing Problem
A.1 Results on CVRP instances . . . . . . . . . . . . . . 126–129

Job Shop Scheduling Problem
A.2 Results on JSSP instances . . . . . . . . . . . . . . . 130–139
A.3 Optimality proven by lower bound . . . . . . . . . . 140–141
A.4 Optimality not proven by lower bound . . . . . . . . 141

JSSP with scheduled Maintenances
A.5 Results on solutions for JSSPM instances . . . . . . 142–151
A.6 Results on lower bounds for JSSPM instances . . . . 152
A.7 Comparison MIP and DP for JSSPM instances . . . 153–158
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Instance UB {H = 10, E = 10} {H = 25, E = 25} {H = 50, E = 25} {H = 75, E = 25}
cost gap (%) CPU (s) cost gap (%) CPU (s) cost gap (%) CPU (s) cost gap (%) CPU (s)

A-n32-k5 784 815 4.0 1 - - 3 784 0 5
A-n33-k5 661 661 0 1
A-n33-k6 742 750 1.1 1 742 0 3
A-n34-k5 778 792 1.8 1 - - 3 - - 6 791 1.7 9
A-n36-k5 799 840 5.1 1 807 1.0 4 - - 8 - - 12

A-n37-k5 669 670 0.1 1 - - 5 - - 11 - - 14
A-n37-k6 949 1019 7.4 1 970 2.2 5 966 1.8 9 - - 13
A-n38-k5 730 787 7.8 1 762 4.4 5 - - 10 759 4.0 13
A-n39-k5 822 861 4.7 1 851 3.5 7 - - 13 - - 20
A-n39-k6 831 846 1.8 1 - - 6 - - 12 842 1.3 18

A-n44-k6 937 947 1.1 2 946 1.0 9 944 0.7 17 - - 26
A-n45-k6 944 - - 2 1062 12.5 9 975 3.3 17 - - 25
A-n45-k7 1146 1174 2.4 2 - - 10 1161 1.3 20 - - 26
A-n46-k7 914 922 0.9 2 921 0.8 11 920 0.7 19 - - 29
A-n48-k7 1073 1133 5.6 3 1075 0.2 12 1073 0 23

A-n53-k7 1010 1046 3.6 4 1028 1.8 19 - - 37 - - 55
A-n54-k7 1167 1252 7.3 4 1190 2.0 18 1189 1.9 37 1183 1.4 58
A-n55-k9 1073 1109 3.4 4 - - 20 1108 3.3 41 1107 3.2 62
A-n60-k9 1354 1463 8.1 5 1446 6.8 29 1373 1.4 53 - - 79
A-n61-k9 1034 1075 4.0 5 - - 28 1066 3.1 52 - - 78

A-n62-k8 1288 1391 8.0 6 1354 5.1 33 1340 4.0 64 1321 2.6 98
A-n63-k9 1616 1687 4.4 7 1637 1.3 35 - - 70 - - 102
A-n63-k10 1314 1396 6.2 7 1345 2.4 35 - - 68 1326 0.9 102
A-n64-k9 1401 1519 8.4 7 1466 4.6 35 1457 4.0 70 - - 111
A-n65-k9 1174 1206 2.7 7 - - 36 1178 0.3 68 - - 106

A-n69-k9 1159 1189 2.6 9 1174 1.3 48 - - 95 - - 140
A-n80-k10 1763 1850 4.9 14 1832 3.9 78 1823 3.4 152 1813 2.8 228

Table A.1: Results on CVRP instances
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Instance UB {H = 10, E = 10} {H = 25, E = 25} {H = 50, E = 25} {H = 75, E = 25}
cost gap (%) CPU (s) cost gap (%) CPU (s) cost gap (%) CPU (s) cost gap (%) CPU (s)

B-n31-k5 672 681 1.3 0 672 0 2
B-n34-k5 788 825 4.7 1 788 0 3
B-n35-k5 955 971 1.7 1 - - 3 - - 6 - - 9
B-n38-k6 805 835 3.7 1 831 3.2 5 817 1.5 9 - - 13
B-n39-k5 549 633 15.3 1 565 2.9 5 - - 10 - - 16

B-n41-k6 829 953 15.0 1 923 11.3 7 869 4.8 12 - - 17
B-n43-k6 742 792 6.7 2 769 3.6 8 - - 15 - - 22
B-n44-k7 909 934 2.8 2 - - 8 933 2.6 16 - - 24
B-n45-k5 751 844 12.4 2 826 10.0 9 - - 15 - - 22
B-n45-k6 678 720 6.2 2 716 5.6 8 687 1.3 15 - - 21

B-n50-k7 741 841 13.5 3 787 6.2 12 - - 24 781 5.4 36
B-n50-k8 1312 1376 4.9 3 1349 2.8 13 1346 2.6 26 - - 39
B-n51-k7 1032 1264 22.5 3 1129 9.4 12 1123 8.8 23 1094 6.0 32
B-n52-k7 747 789 5.6 3 763 2.1 16 755 1.1 31 - - 44
B-n56-k7 707 741 4.8 4 - - 20 - - 39 722 2.1 57

B-n57-k7 1153 1408 22.1 4 1337 16.0 20 - - 37 1227 6.4 52
B-n57-k9 1598 1718 7.5 5 1687 5.6 23 1635 2.3 41 1619 1.3 62
B-n63-k10 1496 1560 4.3 6 1551 3.7 30 1548 3.5 59 1542 3.1 86
B-n64-k9 861 944 9.6 6 865 0.5 32 - - 66 - - 91
B-n66-k9 1316 1386 5.3 6 1358 3.2 36 - - 69 - - 104

B-n67-k10 1032 1143 10.8 7 1106 7.2 39 1103 6.9 76 1099 6.5 110
B-n68-k9 1272 1354 6.4 8 1327 4.3 42 1314 3.3 82 - - 119
B-n78-k10 1221 1304 6.8 13 1296 6.1 65 1260 3.2 129 1255 2.8 187

Table A.1: Results on CVRP instances (continued)
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Instance UB {H = 10, E = 10} {H = 25, E = 25} {H = 50, E = 25} {H = 75, E = 25}
cost gap (%) CPU (s) cost gap (%) CPU (s) cost gap (%) CPU (s) cost gap (%) CPU (s)

P-n16-k8 450 450 0 0
P-n19-k2 212 212 0 0
P-n20-k2 216 216 0 0
P-n21-k2 211 211 0 0
P-n22-k2 216 216 0 0

P-n22-k8 603 631 4.6 0 604 0.2 1 - - 1 - - 1
P-n23-k8 529 529 0 0
P-n40-k5 458 467 2.0 2 463 1.1 7 - - 14 - - 21
P-n45-k5 510 516 1.2 2 510 0 11
P-n50-k7 554 585 5.6 3 565 2.0 13 563 1.6 28 - - 42

P-n50-k8 631 670 6.2 3 662 4.9 14 657 4.1 23 - - 36
P-n50-k10 696 758 8.9 3 722 3.7 14 - - 27 703 1.0 43
P-n51-k10 741 904 22.0 3 824 11.2 13 755 1.9 27 - - 43
P-n55-k7 568 603 6.2 4 577 1.6 20 - - 41 574 1.1 62
P-n55-k8 576 595 3.3 4 590 2.4 22 589 2.3 43 586 1.7 66

P-n55-k10 694 718 3.5 5 - - 21 713 2.7 43 698 0.6 68
P-n55-k15 989 - - 2 - - 14 - - 26 1034 4.6 39
P-n60-k10 744 774 4.0 5 759 2.0 27 751 0.9 58 746 0.3 86
P-n60-k15 968 1002 3.5 5 988 2.1 27 - - 57 - - 82
P-n65-k10 792 862 8.8 7 807 1.9 39 - - 81 - - 121

P-n70-k10 827 905 9.4 9 892 7.9 48 858 3.7 91 849 2.7 145
P-n76-k4 593 611 3.0 11 598 0.8 81 595 0.3 199 593 0 305
P-n76-k5 627 640 2.1 11 - - 72 - - 148 638 1.8 225
P-n101-k4 681 691 1.5 27 - - 219 - - 455 - - 678

F-n45-k4 724 840 16.0 2 733 1.2 8 - - 16 - - 25
F-n72-k4 237 261 10.1 8 257 8.4 43 - - 86 - - 127
F-n135-k7 1162 1334 14.8 58 1260 8.4 326 - - 650 1244 7.1 957

Table A.1: Results on CVRP instances (continued)
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Instance UB {H = 10, E = 10} {H = 25, E = 25} {H = 50, E = 25} {H = 75, E = 25}
cost gap (%) CPU (s) cost gap (%) CPU (s) cost gap (%) CPU (s) cost gap (%) CPU (s)

E-n13-k4 247 247 0 0
E-n22-k4 375 375 0 0
E-n23-k3 569 577 1.4 0 - - 1 569 0 1
E-n30-k3 534 575 7.7 0 - - 2 553 3.6 3 540 1.1 4
E-n31-k7 379 379 0 1

E-n33-k4 835 837 0.2 1 835 0 3
E-n51-k5 521 521 0 3
E-n76-k7 682 708 3.8 11 696 2.1 62 688 0.9 135 - - 214
E-n76-k8 735 781 6.3 12 736 0.1 65 - - 143 - - 212
E-n76-k10 830 859 3.5 12 835 0.6 63 - - 129 - - 208

E-n76-k14 1021 1167 14.3 11 1116 9.3 61 1083 6.1 123 1075 5.3 184
E-n101-k8 815 859 5.4 26 847 3.9 158 846 3.8 314 845 3.7 467
E-n101-k14 1067 1153 8.1 29 1122 5.2 168 1101 3.2 343 - - 514

G-n262-k25 5685 5941 4.5 500 - - 2907 5785 1.8 5891 - - 8748

M-n101-k10 820 874 6.6 25 847 3.3 145 837 2.1 276 833 1.6 427
M-n121-k7 1034 1072 3.7 35 - - 228 - - 506 1055 2.0 767
M-n151-k12 1015 1059 4.3 95 1056 4.0 552 1046 3.1 1109 - - 1632
M-n200-k16 1274 1521 19.4 205 1400 9.9 1215 1370 7.5 2435 1333 4.6 3695
M-n200-k17 1275 1399 9.7 226 - - 1311 1326 4.0 2680 1321 3.6 3987

att-n48-k4 40002 40625 1.6 2 40101 0.2 11 - - 23 - - 35
bayg-n29-k4 2050 2055 0.2 1 2050 0 2
bays-n29-k5 2963 3236 9.2 0 2978 0.5 2 - - 3 - - 4
dantzig-n42-k4 1142 1212 6.1 2 1211 6.0 8 - - 14 - - 21
fri-n26-k3 1353 1358 0.4 0 - - 1 - - 2 - - 3
gr-n17-k3 2685 2838 5.7 0 2769 3.1 0 2685 0 0
gr-n21-k3 3704 3880 4.8 0 3755 1.4 0 3704 0 1
gr-n24-k4 2053 2193 6.8 0 2154 4.9 1 - - 2 2080 1.3 2
gr-n48-k3 5985 6429 7.4 3 6401 7.0 12 - - 22 - - 35
hk-n48-k4 14749 15208 3.1 3 14844 0.6 12 - - 23 - - 35
swiss-n42-k5 1668 1753 5.1 1 1737 4.1 8 1717 2.9 14 - - 21
ulysses-n16-k3 7965 8222 3.2 0 - - 0 - - 0 - - 0
ulysses-n22-k4 9179 9748 6.2 0 9344 1.8 0 - - 1 9301 1.3 2
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Instance # Ja # Mb LB UB H = 10 H = 100

Best Gapc # Id CPUe Memf Best Gapc # Id CPUe Memf

la01 10 5 666 667 0.2 5 1 1 666 0 2 1 1
la02 10 5 655 659 0.6 3 0 1 655 0 2 0 1
la03 10 5 597 614 2.8 4 0 1 597 0 2 1 1
la04 10 5 590 590 0 5 0 1 - - - - -
la05 10 5 593 593 0 2 0 1 - - - - -

la06 15 5 926 926 0 4 0 1 - - - - -
la07 15 5 890 890 0 3 0 1 - - - - -
la08 15 5 863 863 0 4 0 1 - - - - -
la09 15 5 951 951 0 3 1 1 - - - - -
la10 15 5 958 958 0 2 0 1 - - - - -

la11 20 5 1222 1222 0 3 1 1 - - - - -
la12 20 5 1039 1039 0 3 1 1 - - - - -
la13 20 5 1150 1150 0 3 1 1 - - - - -
la14 20 5 1292 1292 0 3 0 1 - - - - -
la15 20 5 1207 1207 0 8 4 1 - - - - -

la16 10 10 945 988 4.6 5 1 1 964 2.0 2 2 1
la17 10 10 784 793 1.1 4 0 1 784 0 3 2 1
la18 10 10 848 880 3.8 5 0 1 849 0.1 2 2 1
la19 10 10 842 863 2.5 3 0 1 848 0.7 2 2 1
la20 10 10 902 949 5.2 4 1 1 902 0 3 1 1

la21 15 10 1046 1198 14.5 5 2 1 1107 5.8 7 32 2
la22 15 10 927 1041 12.3 6 2 1 977 5.4 4 17 2
la23 15 10 1032 1067 3.4 6 3 1 1051 1.8 2 8 2
la24 15 10 935 973 4.1 9 2 1 953 1.9 3 11 2
la25 15 10 977 1070 9.5 3 2 1 1024 4.8 4 17 2

a # Jobs c Relative gap of Best with UB (%) e Sum of CPU over all iterations (s)
b # Machines d # Iterations f Max Memory used over all iterations (MB)

Table A.2: Results from iteratively finding JSSP solutions by DP
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A
Job

Shop
Scheduling

Problem

Instance # Ja # Mb LB UB H = 10 H = 100

Best Gapc # Id CPUe Memf Best Gapc # Id CPUe Memf

la26 20 10 1218 1272 4.4 3 2 1 - - 1 9 2
la27 20 10 1235 1363 10.4 4 4 1 1313 6.3 3 31 2
la28 20 10 1216 1313 8.0 6 5 1 1234 1.5 6 72 2
la29 20 10 1152 1315 14.1 5 4 1 1257 9.1 3 29 2
la30 20 10 1355 1439 6.2 4 3 1 1366 0.8 4 36 2

la31 30 10 1784 1787 0.2 5 12 1 1784 0 2 61 4
la32 30 10 1850 1883 1.8 7 22 2 1850 0 4 128 4
la33 30 10 1719 1721 0.1 8 24 2 1719 0 2 59 4
la34 30 10 1721 1734 0.8 5 11 1 1721 0 3 92 4
la35 30 10 1888 1891 0.2 4 10 1 1888 0 2 59 3

la36 15 15 1268 1363 7.5 4 3 1 1337 5.4 2 12 2
la37 15 15 1397 1481 6.0 4 2 1 1461 4.6 4 28 2
la38 15 15 1196 1360 13.7 6 4 1 1250 4.5 5 35 2
la39 15 15 1233 1367 10.9 5 4 1 1328 7.7 3 20 2
la40 15 15 1222 1307 7.0 7 6 1 1297 6.1 2 13 2

orb01 10 10 1059 1107 4.5 3 0 1 1060 0.1 2 2 1
orb02 10 10 888 944 6.3 4 0 1 908 2.3 2 3 1
orb03 10 10 1005 1083 7.8 3 0 1 1036 3.1 2 3 1
orb04 10 10 1005 1044 3.9 6 2 1 1022 1.7 2 2 1
orb05 10 10 887 937 5.6 4 0 1 898 1.2 4 5 1

orb06 10 10 1010 1093 8.2 3 0 1 1033 2.3 3 3 1
orb07 10 10 397 506 27.5 2 0 1 405 2.0 2 2 1
orb08 10 10 899 947 5.3 4 0 1 939 4.4 2 2 1
orb09 10 10 934 954 2.1 4 0 1 942 0.9 2 2 1
orb10 10 10 944 1012 7.2 4 2 1 984 4.2 2 3 1

a # Jobs c Relative gap of Best with UB (%) e Sum of CPU over all iterations (s)
b # Machines d # Iterations f Max Memory used over all iterations (MB)

Table A.2: Results from iteratively finding JSSP solutions by DP (continued)131



A

C
om

putational
R

esults

Instance # Ja # Mb LB UB H = 10 H = 100

Best Gapc # Id CPUe Memf Best Gapc # Id CPUe Memf

ft06 6 6 55 55 0 2 0 1 - - - - -
ft10 10 10 930 959 3.1 3 0 1 941 1.2 2 3 1
ft20 20 5 1165 1165 0 8 2 1 - - - - -

abz5 10 10 1234 1269 2.8 3 0 1 1238 0.3 3 1 1
abz6 10 10 943 952 1.0 7 0 1 948 0.5 2 2 1
abz7 20 15 656 742 13.1 3 4 1 729 11.1 3 52 3
abz8 20 15 646 665 742 11.6 8 14 1 723 8.7 3 53 3
abz9 20 15 678 774 14.2 4 5 1 744 9.7 2 33 3

yn1 20 20 884 1006 13.8 3 6 2 931 5.3 4 98 4
yn2 20 20 870 904 1018 12.6 5 11 2 958 6.0 5 133 5
yn3 20 20 840 892 999 12.0 4 8 2 944 5.8 2 50 3
yn4 20 20 920 968 1114 15.1 3 6 2 1085 12.1 3 83 4

ta01 15 15 1231 1387 12.7 5 3 1 1305 6.0 3 22 2
ta02 15 15 1244 1375 10.5 3 2 1 1333 7.2 3 21 2
ta03 15 15 1218 1357 11.4 5 1 1 1271 4.4 5 35 2
ta04 15 15 1175 1263 7.5 4 3 1 1220 3.8 3 19 2
ta05 15 15 1224 1344 9.8 4 3 1 1263 3.2 4 27 2

ta06 15 15 1238 1410 13.9 3 1 1 1308 5.7 4 28 2
ta07 15 15 1227 1318 7.4 6 2 1 1287 4.9 4 24 2
ta08 15 15 1217 1309 7.6 5 4 1 1261 3.6 5 33 2
ta09 15 15 1274 1353 6.2 7 7 1 1349 5.9 3 21 2
ta10 15 15 1241 1395 12.4 4 2 1 1319 6.3 3 22 2

a # Jobs c Relative gap of Best with UB (%) e Sum of CPU over all iterations (s)
b # Machines d # Iterations f Max Memory used over all iterations (MB)

Table A.2: Results from iteratively finding JSSP solutions by DP (continued)
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Scheduling

Problem

Instance # Ja # Mb LB UB H = 10 H = 100

Best Gapc # Id CPUe Memf Best Gapc # Id CPUe Memf

ta11 20 15 1323 1357 1588 17.0 4 4 1 1514 11.6 4 66 3
ta12 20 15 1351 1367 1529 11.9 4 6 1 1500 9.7 3 54 3
ta13 20 15 1282 1342 1463 9.0 4 5 1 - - 1 12 3
ta14 20 15 1345 1497 11.3 6 8 1 - - 1 14 3
ta15 20 15 1304 1339 1529 14.2 3 3 1 1475 10.2 3 48 3

ta16 20 15 1304 1360 1544 13.5 3 4 2 1487 9.3 3 51 3
ta17 20 15 1462 1654 13.1 5 7 1 1591 8.8 3 51 3
ta18 20 15 1369 1396 1602 14.8 7 11 1 - - 1 15 3
ta19 20 15 1304 1332 1518 14.0 8 12 1 1467 10.1 3 53 3
ta20 20 15 1318 1348 1561 15.8 3 4 1 1432 6.2 3 46 3

ta21 20 20 1573 1642 1872 14.0 6 13 2 1810 10.2 2 48 4
ta22 20 20 1542 1600 1806 12.9 4 8 2 1800 12.5 2 48 4
ta23 20 20 1474 1557 1773 13.9 4 7 2 1701 9.2 2 49 4
ta24 20 20 1606 1644 1813 10.3 9 22 2 - - 1 23 3
ta25 20 20 1518 1595 1800 12.9 5 10 2 1789 12.2 2 50 4

ta26 20 20 1558 1643 1831 11.4 6 14 2 1744 6.1 4 100 4
ta27 20 20 1617 1680 1940 15.5 3 5 2 1845 9.8 6 153 4
ta28 20 20 1591 1603 1758 9.7 4 7 2 - - 1 23 4
ta29 20 20 1525 1625 1781 9.6 6 14 2 1732 6.6 3 75 4
ta30 20 20 1485 1584 1784 12.6 4 8 2 1710 8.0 4 103 3

ta31 30 15 1764 2047 16.0 4 21 2 - - 1 59 7
ta32 30 15 1774 1784 2150 20.5 5 26 2 - - 1 64 6
ta33 30 15 1778 1791 2064 15.2 4 21 2 1984 10.8 2 122 6
ta34 30 15 1828 1829 2087 14.1 4 16 2 - - 1 56 5
ta35 30 15 2007 2170 8.1 3 13 2 - - 1 52 6

a # Jobs c Relative gap of Best with UB (%) e Sum of CPU over all iterations (s)
b # Machines d # Iterations f Max Memory used over all iterations (MB)

Table A.2: Results from iteratively finding JSSP solutions by DP (continued)133



A

C
om

putational
R

esults

Instance # Ja # Mb LB UB H = 10 H = 100

Best Gapc # Id CPUe Memf Best Gapc # Id CPUe Memf

ta36 30 15 1819 2080 14.3 7 41 2 1999 9.9 2 127 6
ta37 30 15 1771 2022 14.2 3 16 2 1968 11.1 6 367 6
ta38 30 15 1673 1967 17.6 4 21 2 1933 15.5 6 381 6
ta39 30 15 1795 2076 15.7 3 14 2 1966 9.5 5 305 6
ta40 30 15 1631 1669 1951 16.9 4 20 2 1936 16.0 3 199 6

ta41 30 20 1876 2005 2441 21.7 6 48 2 2348 17.1 3 288 7
ta42 30 20 1867 1937 2334 20.5 7 57 2 - - 1 88 6
ta43 30 20 1809 1846 2245 21.6 7 56 2 2152 16.6 2 189 7
ta44 30 20 1927 1979 2438 23.2 5 40 2 2303 16.4 7 629 7
ta45 30 20 1997 2000 2273 13.7 5 39 2 2183 9.2 3 270 7

ta46 30 20 1940 2004 2357 17.6 4 30 2 2342 16.9 2 177 7
ta47 30 20 1789 1889 2234 18.3 6 48 2 - - 1 91 7
ta48 30 20 1912 1941 2258 16.3 3 22 2 2225 14.6 4 363 7
ta49 30 20 1915 1961 2403 22.5 4 30 2 2338 19.2 2 181 8
ta50 30 20 1807 1923 2373 23.4 4 32 2 2343 21.8 2 188 7

ta51 50 15 2760 3025 9.6 4 157 4 - - 1 477 28
ta52 50 15 2756 2993 8.6 5 179 4 2983 8.2 2 875 22
ta53 50 15 2717 2995 10.2 3 96 4 2929 7.8 3 1447 24
ta54 50 15 2839 2926 3.1 4 137 4 2921 2.9 2 950 18
ta55 50 15 2679 3013 12.5 3 89 4 2999 11.9 2 987 21

ta56 50 15 2781 2962 6.5 7 256 4 - - 1 393 19
ta57 50 15 2943 3105 5.5 3 83 3 - - 1 382 20
ta58 50 15 2885 3053 5.8 3 97 4 3047 5.6 3 1379 18
ta59 50 15 2655 2948 11.0 7 282 4 2926 10.2 3 1339 21
ta60 50 15 2723 3003 10.3 7 307 4 2913 7.0 6 3022 24

a # Jobs c Relative gap of Best with UB (%) e Sum of CPU over all iterations (s)
b # Machines d # Iterations f Max Memory used over all iterations (MB)

Table A.2: Results from iteratively finding JSSP solutions by DP (continued)
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Instance # Ja # Mb LB UB H = 10 H = 100

Best Gapc # Id CPUe Memf Best Gapc # Id CPUe Memf

ta61 50 20 2868 3228 12.6 5 249 4 3169 10.5 5 3186 26
ta62 50 20 2869 3282 14.4 5 250 5 3243 13.0 3 2006 27
ta63 50 20 2755 3147 14.2 7 385 5 3127 13.5 3 1999 25
ta64 50 20 2702 3126 15.7 3 134 5 3041 12.5 4 2627 24
ta65 50 20 2725 3117 14.4 4 213 5 3117 14.4 1 647 25

ta66 50 20 2845 3291 15.7 6 320 4 3194 12.3 4 2501 22
ta67 50 20 2825 3287 16.4 5 255 4 3166 12.1 5 3100 28
ta68 50 20 2784 3182 14.3 5 255 5 3129 12.4 6 3797 23
ta69 50 20 3071 3443 12.1 5 242 4 3413 11.1 2 1166 23
ta70 50 20 2995 3395 13.4 7 376 5 - - 1 606 23

ta71 100 20 5464 5816 6.4 4 2081 23 - - 1 6754 180
ta72 100 20 5181 5531 6.8 3 1703 33 5418 4.6 5 36328 208
ta73 100 20 5568 5951 6.9 4 2101 25 5852 5.1 10 68793 195
ta74 100 20 5339 5589 4.7 4 2331 26 5556 4.1 3 20723 193
ta75 100 20 5392 5876 9.0 8 5380 26 5802 7.6 4 30631 200

ta76 100 20 5342 5780 8.2 4 2089 21 5619 5.2 2 14294 172
ta77 100 20 5436 5772 6.2 4 2462 29 5616 3.3 4 29165 206
ta78 100 20 5394 5708 5.8 7 4018 22 5660 4.9 3 20521 179
ta79 100 20 5358 5583 4.2 9 5757 24 5536 3.3 7 49794 222
ta80 100 20 5183 5514 6.4 6 3805 23 5448 5.1 2 14244 151

a # Jobs c Relative gap of Best with UB (%) e Sum of CPU over all iterations (s)
b # Machines d # Iterations f Max Memory used over all iterations (MB)

Table A.2: Results from iteratively finding JSSP solutions by DP (continued)

135



A

C
om

putational
R

esults

Instance # Ja # Mb LB UB H = 10 H = 100

Best Gapc # Id CPUe Memf Best Gapc # Id CPUe Memf

dmu01 20 15 2501 2563 2961 15.5 8 16 2 2709 5.7 3 55 3
dmu02 20 15 2651 2706 3118 15.2 3 4 1 2873 6.2 6 112 3
dmu03 20 15 2731 3122 14.3 3 4 1 - - 1 17 3
dmu04 20 15 2601 2669 2953 10.6 9 16 2 2923 9.5 2 38 3
dmu05 20 15 2749 3125 13.7 4 7 1 2994 8.9 5 96 3

dmu06 20 20 2998 3244 3571 10.1 3 6 2 3504 8.0 4 121 4
dmu07 20 20 2815 3046 3427 12.5 6 15 2 3316 8.9 2 55 4
dmu08 20 20 3051 3188 3742 17.4 6 16 2 3475 9.0 2 56 4
dmu09 20 20 2956 3092 3446 11.4 5 12 2 3397 9.9 2 63 5
dmu10 20 20 2858 2984 3259 9.2 6 15 2 3139 5.2 3 84 5

dmu11 30 15 3395 3430 4085 19.1 5 36 2 4081 19.0 2 171 6
dmu12 30 15 3418 3495 4069 16.4 6 45 2 4046 15.8 4 316 6
dmu13 30 15 3681 4337 17.8 4 24 2 4166 13.2 3 231 6
dmu14 30 15 3394 4013 18.2 4 23 2 3960 16.7 3 222 6
dmu15 30 15 3343 3867 15.7 6 40 2 3696 10.6 6 515 7

dmu16 30 20 3734 3751 4421 17.9 4 33 2 4409 17.5 3 346 7
dmu17 30 20 3709 3814 4420 15.9 5 48 2 4405 15.5 2 233 7
dmu18 30 20 3844 4741 23.3 6 60 2 4584 19.3 6 689 7
dmu19 30 20 3669 3768 4445 18.0 5 45 2 4360 15.7 3 350 7
dmu20 30 20 3604 3710 4328 16.7 8 78 2 4216 13.6 3 344 8

dmu21 40 15 4380 4873 11.3 5 86 3 4758 8.6 5 1136 15
dmu22 40 15 4725 5137 8.7 4 62 3 5090 7.7 3 602 10
dmu23 40 15 4668 5025 7.6 6 109 3 - - 1 211 11
dmu24 40 15 4648 4938 6.2 5 88 3 4919 5.8 2 410 11
dmu25 40 15 4164 4538 9.0 4 67 3 4439 6.6 4 806 11

a # Jobs c Relative gap of Best with UB (%) e Sum of CPU over all iterations (s)
b # Machines d # Iterations f Max Memory used over all iterations (MB)

Table A.2: Results from iteratively finding JSSP solutions by DP (continued)
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Instance # Ja # Mb LB UB H = 10 H = 100

Best Gapc # Id CPUe Memf Best Gapc # Id CPUe Memf

dmu26 40 20 4647 5441 17.1 5 135 3 - - 1 298 13
dmu27 40 20 4848 5861 20.9 4 97 3 5624 16.0 8 2391 15
dmu28 40 20 4692 5373 14.5 6 143 3 - - 1 290 12
dmu29 40 20 4691 5431 15.8 4 93 3 5400 15.1 2 595 13
dmu30 40 20 4732 5595 18.2 3 61 3 5446 15.1 2 603 15

dmu31 50 15 5640 5949 5.5 5 186 4 5872 4.1 3 1309 20
dmu32 50 15 5927 6062 2.3 4 111 4 5953 0.4 6 2178 21
dmu33 50 15 5728 6156 7.5 3 81 4 5879 2.6 6 2354 24
dmu34 50 15 5385 5590 3.8 7 256 4 - - 1 442 19
dmu35 50 15 5635 5824 3.4 4 139 4 5777 2.5 2 856 22

dmu36 50 20 5621 6567 16.8 7 360 4 6470 15.1 2 1237 21
dmu37 50 20 5851 6527 11.6 3 130 4 6465 10.5 4 2571 22
dmu38 50 20 5713 6793 18.9 5 252 4 6617 15.8 3 1888 23
dmu39 50 20 5747 6610 15.0 10 594 5 6321 10.0 5 3140 23
dmu40 50 20 5577 6506 16.7 5 258 4 6405 14.8 3 1863 25

dmu41 20 15 3007 3248 3852 18.6 4 9 1 3698 13.9 4 119 4
dmu42 20 15 3172 3390 3871 14.2 3 6 1 3817 12.6 2 56 4
dmu43 20 15 3292 3441 4054 17.8 4 9 1 3945 14.6 3 84 4
dmu44 20 15 3283 3488 4178 19.8 3 7 1 4021 15.3 5 128 4
dmu45 20 15 3001 3272 3778 15.5 5 11 1 3604 10.1 2 54 4

dmu46 20 20 3575 4035 4754 17.8 5 17 2 4537 12.4 3 134 5
dmu47 20 20 3522 3939 4698 19.3 6 22 2 4276 8.6 5 212 5
dmu48 20 20 3447 3763 4331 15.1 3 8 2 4158 10.5 5 200 5
dmu49 20 20 3403 3710 4405 18.7 6 26 2 4375 17.9 2 86 4
dmu50 20 20 3496 3729 4401 18.0 5 16 2 4283 14.9 5 197 5

a # Jobs c Relative gap of Best with UB (%) e Sum of CPU over all iterations (s)
b # Machines d # Iterations f Max Memory used over all iterations (MB)
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Instance # Ja # Mb LB UB H = 10 H = 100

Best Gapc # Id CPUe Memf Best Gapc # Id CPUe Memf

dmu51 30 15 3917 4167 5066 21.6 3 30 2 4995 19.9 3 406 9
dmu52 30 15 4065 4311 5272 22.3 4 46 2 5011 16.2 2 309 11
dmu53 30 15 4141 4394 5450 24.0 3 22 2 5232 19.1 2 210 7
dmu54 30 15 4202 4362 5221 19.7 7 76 2 5156 18.2 2 239 9
dmu55 30 15 4140 4271 5178 21.2 7 59 2 - - 1 101 7

dmu56 30 20 4554 4941 5918 19.8 4 61 2 5783 17.0 4 746 10
dmu57 30 20 4302 4655 5747 23.5 3 35 2 5585 20.0 3 503 10
dmu58 30 20 4319 4708 5746 22.0 4 51 2 5502 16.9 5 814 10
dmu59 30 20 4217 4624 5782 25.0 5 73 2 5643 22.0 2 329 11
dmu60 30 20 4319 4755 5682 19.5 3 36 2 - - 1 177 11

dmu61 40 15 4917 5172 6571 27.0 3 67 4 6322 22.2 4 1192 21
dmu62 40 15 5033 5265 6524 23.9 5 133 4 6198 17.7 3 897 18
dmu63 40 15 5111 5326 6461 21.3 7 192 4 6343 19.1 4 1231 20
dmu64 40 15 5130 5250 6757 28.7 4 91 3 6295 19.9 4 1181 19
dmu65 40 15 5105 5190 6376 22.9 4 92 3 6199 19.4 4 1067 18

dmu66 40 20 5391 5717 7385 29.2 4 150 4 7135 24.8 4 2060 26
dmu67 40 20 5589 5813 7149 23.0 7 268 3 6952 19.6 4 1793 18
dmu68 40 20 5426 5773 7402 28.2 7 313 4 6820 18.1 4 2063 22
dmu69 40 20 5423 5709 7141 25.1 3 82 3 6933 21.4 3 1195 16
dmu70 40 20 5501 5889 7687 30.5 3 97 4 7214 22.5 3 1380 21

dmu71 50 15 6080 6223 7685 23.5 5 294 6 7634 22.7 2 1359 39
dmu72 50 15 6395 6483 7981 23.1 4 189 6 7543 16.4 2 1255 34
dmu73 50 15 6001 6163 7547 22.5 5 259 5 7211 17.0 5 2795 36
dmu74 50 15 6123 6220 7790 25.2 8 397 5 7538 21.2 5 3343 39
dmu75 50 15 6029 6197 7614 22.9 6 273 5 7388 19.2 5 2644 33

a # Jobs c Relative gap of Best with UB (%) e Sum of CPU over all iterations (s)
b # Machines d # Iterations f Max Memory used over all iterations (MB)

Table A.2: Results from iteratively finding JSSP solutions by DP (continued)
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Instance # Ja # Mb LB UB H = 10 H = 100

Best Gapc # Id CPUe Memf Best Gapc # Id CPUe Memf

dmu76 50 20 6342 6813 8511 24.9 5 433 6 8126 19.3 4 3967 42
dmu77 50 20 6499 6822 8637 26.6 3 160 5 8433 23.6 2 1897 37
dmu78 50 20 6586 6770 8364 23.5 9 785 6 8213 21.3 3 3250 40
dmu79 50 20 6650 6970 8797 26.2 6 498 7 8727 25.2 3 2883 47
dmu80 50 20 6459 6686 8184 22.4 4 300 6 - - 1 990 46

swv01 20 10 1407 1579 12.2 6 7 1 1503 6.8 3 35 3
swv02 20 10 1475 1589 7.7 3 2 1 - - 1 11 3
swv03 20 10 1398 1581 13.1 4 3 1 1517 8.5 3 34 3
swv04 20 10 1450 1467 1731 18.0 4 6 1 - - 1 13 3
swv05 20 10 1424 1648 15.7 4 3 1 1584 11.2 4 50 3

swv06 20 15 1591 1671 1961 17.4 4 8 1 1918 14.8 2 41 4
swv07 20 15 1447 1594 1762 10.5 3 4 1 - - 1 24 4
swv08 20 15 1641 1752 2077 18.6 4 8 1 1993 13.8 3 65 4
swv09 20 15 1605 1655 1995 20.5 6 13 1 1992 20.4 2 44 4
swv10 20 15 1632 1743 1999 14.7 3 5 1 1976 13.4 2 43 4

swv11 50 10 2983 3427 14.9 6 191 4 3345 12.1 4 1169 20
swv12 50 10 2972 2977 3487 17.1 4 117 5 3324 11.7 3 1103 31
swv13 50 10 3104 3521 13.4 3 80 4 3369 8.5 2 769 25
swv14 50 10 2968 3276 10.4 4 110 4 3209 8.1 4 1385 27
swv15 50 10 2885 3468 20.2 3 67 4 3306 14.6 2 676 25

swv16 50 10 2924 2924 0 5 83 3 - - - - -
swv17 50 10 2794 2794 0 7 133 3 - - - - -
swv18 50 10 2852 2852 0 4 63 3 - - - - -
swv19 50 10 2843 2884 1.4 3 44 3 2843 0 3 634 16
swv20 50 10 2823 2827 0.1 3 43 3 2823 0 2 403 12

a # Jobs c Relative gap of Best with UB (%) e Sum of CPU over all iterations (s)
b # Machines d # Iterations f Max Memory used over all iterations (MB)
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Computational Results

Instance # Ja # Mb CPUc Memd

ft06 6 6 0 0
ft10 10 10 28 13
ft20 20 5 0 0
dmu13 30 15 0 1
dmu14 30 15 0 1
dmu15 30 15 0 1
dmu18 30 20 0 2
dmu21 40 15 1 1
dmu22 40 15 0 1
dmu23 40 15 0 1
dmu24 40 15 0 1
dmu25 40 15 0 1
dmu26 40 20 0 1
dmu27 40 20 0 1
dmu28 40 20 0 1
dmu29 40 20 0 1
dmu30 40 20 0 1
dmu31 50 15 0 1
dmu32 50 15 0 1
dmu33 50 15 0 1
dmu34 50 15 0 1
dmu35 50 15 0 1
dmu36 50 20 0 2
dmu37 50 20 0 2
dmu38 50 20 0 2
dmu39 50 20 0 2
dmu40 50 20 1 2
la01 10 5 0 0
la02 10 5 0 0
la03 10 5 0 0
la04 10 5 0 0
la05 10 5 0 0
la06 15 5 0 0
la07 15 5 0 0
la08 15 5 0 0
la09 15 5 0 0
la10 15 5 0 0
la11 20 5 0 0
la12 20 5 0 0
la13 20 5 0 0
la14 20 5 0 0
la15 20 5 0 0
la16 10 10 11 8
la17 10 10 0 1
la18 10 10 5 3
la19 10 10 3 2
la20 10 10 1 1
la22 15 10 105 34
la23 15 10 0 0
la24 15 10 100 24

Instance # Ja # Mb CPUc Memd

la26 20 10 0 1
la27 20 10 0 1
la28 20 10 0 0
la30 20 10 0 1
la31 30 10 0 1
la32 30 10 0 1
la33 30 10 0 1
la34 30 10 0 1
la35 30 10 0 1
la37 15 15 0 1
la39 15 15 36 12
abz5 10 10 14 8
abz6 10 10 1 1
orb01 10 10 16 7
orb02 10 10 10 5
orb03 10 10 87 24
orb04 10 10 7 5
orb05 10 10 11 4
orb06 10 10 17 6
orb07 10 10 3 2
orb08 10 10 0 0
orb09 10 10 5 3
orb10 10 10 0 1
swv02 20 10 0 1
swv11 50 10 0 1
swv13 50 10 0 1
swv14 50 10 0 1
swv15 50 10 0 1
swv16 50 10 0 1
swv17 50 10 0 1
swv18 50 10 0 1
swv19 50 10 0 1
swv20 50 10 0 1
ta01 15 15 1024 304
ta14 20 15 0 1
ta17 20 15 2763 457
ta31 30 15 0 1
ta36 30 15 0 1
ta37 30 15 0 1
ta38 30 15 0 1
ta39 30 15 0 1
ta51 50 15 0 1
ta52 50 15 0 1
ta53 50 15 0 1
ta54 50 15 0 1
ta55 50 15 0 1
ta56 50 15 0 1
ta57 50 15 0 1
ta58 50 15 0 1
ta59 50 15 0 1
ta60 50 15 0 1

a # Jobs b # Machines c CPU (s) d Memory (MB)

Table A.3: Optimality proven by finding lower bound with DP
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A

A Job Shop Scheduling Problem

Instance # Ja # Mb CPUc Memd

ta61 50 20 0 2
ta62 50 20 0 2
ta63 50 20 0 2
ta64 50 20 0 2
ta65 50 20 0 2
ta66 50 20 0 2
ta67 50 20 1 2
ta68 50 20 0 2
ta69 50 20 0 2
ta70 50 20 0 2

Instance # Ja # Mb CPUc Memd

ta71 100 20 0 3
ta72 100 20 0 3
ta73 100 20 0 3
ta74 100 20 0 3
ta75 100 20 0 3
ta76 100 20 0 3
ta77 100 20 0 3
ta78 100 20 0 3
ta79 100 20 0 3
ta80 100 20 1 3

a # Jobs b # Machines c CPU (s) d Memory (MB)

Table A.3: Optimality proven by finding lower bound with DP
(continued)

Instance # Ja # Mb CPUc Memd

abz7 20 15 262 649
abz9 20 15 260 543
la21 15 10 199 256
la25 15 10 236 267
la29 20 10 118 288
la36 15 15 144 318
la38 15 15 208 396
la40 15 15 501 347
swv01 20 10 556 365
swv03 20 10 368 516
swv05 20 10 571 350
yn1 20 20 380 760

Instance # Ja # Mb CPUc Memd

dmu03 20 15 366 642
dmu05 20 15 481 638
ta02 15 15 336 370
ta03 15 15 232 382
ta04 15 15 233 378
ta05 15 15 234 381
ta06 15 15 171 334
ta07 15 15 168 313
ta08 15 15 193 333
ta09 15 15 147 337
ta10 15 15 209 400
ta35 30 15 367 1136

a # Jobs b # Machines c CPU (s) d Memory (MB)

Table A.4: Optimality not proven by finding lower bound with DP
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Instance Bestab # Iterationsa CPUac Memoryad

ft06|h|max|1|h|max|1 103 98 3 2 13 34 3 12
ft06|h|max|1|h|max| 1

3 71 3 7 3
ft06|h|max|1|h|sum| 1

5 98 94 3 2 12 29 3 12
ft06|h|max|1|nh|max|1 97 ✓ 3 1 8 3 3 2
ft06|h|max|1|nh|max| 1

3 71 3 8 3
ft06|h|max|1|nh|sum| 1

5 88 3 8 3

ft06|h|max| 3
2 |h|max|1 79 3 4 2

ft06|h|max| 3
2 |h|max| 1

3 64 3 6 3
ft06|h|max| 3

2 |h|sum| 1
5 76 3 5 3

ft06|h|max| 3
2 |nh|max|1 79 3 2 3

ft06|h|max| 3
2 |nh|max| 1

3 64 3 6 3
ft06|h|max| 3

2 |nh|sum| 1
5 76 3 5 3

ft06|h|sum| 1
3 |h|max|1 79 3 4 3

ft06|h|sum| 1
3 |h|max| 1

3 64 3 5 3
ft06|h|sum| 1

3 |h|sum| 1
5 76 3 5 3

ft06|h|sum| 1
3 |nh|max|1 79 3 3 3

ft06|h|sum| 1
3 |nh|max| 1

3 64 3 4 3
ft06|h|sum| 1

3 |nh|sum| 1
5 76 3 5 3

ft06|h|sum| 2
3 |h|max|1 65 2 1 3

ft06|h|sum| 2
3 |h|max| 1

3 59 2 0 3
ft06|h|sum| 2

3 |h|sum| 1
5 64 2 1 3

ft06|h|sum| 2
3 |nh|max|1 65 2 0 3

ft06|h|sum| 2
3 |nh|max| 1

3 59 2 1 3
ft06|h|sum| 2

3 |nh|sum| 1
5 63 2 0 3

ft06|nh|max|1|h|max|1 106 100 3 2 14 40 3 11
ft06|nh|max|1|h|max| 1

3 71 3 7 3
ft06|nh|max|1|h|sum| 1

5 100 95 3 2 14 32 3 11
ft06|nh|max|1|nh|max|1 104 99 3 2 13 39 3 12
ft06|nh|max|1|nh|max| 1

3 71 3 7 3
ft06|nh|max|1|nh|sum| 1

5 89 3 8 3
a Results for different values of H (103, 104, 105, 106) c Sum of CPU over all iterations (s)
b Solutions proven to be optimal in bold, d Max Memory used over all iterations (MB)
solutions in italic when proven to be optimal with increased H (denoted by ✓)

Table A.5: Results from iteratively finding solutions by DP for JSSPM instances
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Instance Bestab # Iterationsa CPUac Memoryad

ft06|nh|max| 3
2 |h|max|1 79 3 5 2

ft06|nh|max| 3
2 |h|max| 1

3 64 3 6 3
ft06|nh|max| 3

2 |h|sum| 1
5 76 3 5 3

ft06|nh|max| 3
2 |nh|max|1 79 3 5 3

ft06|nh|max| 3
2 |nh|max| 1

3 64 3 4 3
ft06|nh|max| 3

2 |nh|sum| 1
5 76 3 5 3

ft06|nh|sum| 1
3 |h|max|1 91 88 3 2 9 29 3 10

ft06|nh|sum| 1
3 |h|max| 1

3 67 3 6 3
ft06|nh|sum| 1

3 |h|sum| 1
5 87 86 3 1 10 17 3 8

ft06|nh|sum| 1
3 |nh|max|1 89 86 3 2 9 24 3 10

ft06|nh|sum| 1
3 |nh|max| 1

3 66 3 8 3
ft06|nh|sum| 1

3 |nh|sum| 1
5 79 3 8 3

ft06|nh|sum| 2
3 |h|max|1 66 3 1 3

ft06|nh|sum| 2
3 |h|max| 1

3 60 3 4 3
ft06|nh|sum| 2

3 |h|sum| 1
5 65 3 1 3

ft06|nh|sum| 2
3 |nh|max|1 66 3 2 3

ft06|nh|sum| 2
3 |nh|max| 1

3 59 3 4 3
ft06|nh|sum| 2

3 |nh|sum| 1
5 64 3 1 3

la01|h|max|1|h|max|1 1356 1352 4 2 68 162 5 19
la01|h|max|1|h|max| 1

3 906 901 897 3 2 2 53 357 1477 4 20 161
la01|h|max|1|h|sum| 1

5 1621 1609 1604 3 2 2 51 370 1595 5 27 208
la01|h|max|1|nh|max|1 1367 1352 4 2 72 194 4 25
la01|h|max|1|nh|max| 1

3 904 901 897 3 2 2 53 369 1554 4 20 164
la01|h|max|1|nh|sum| 1

5 1604 3 32 4

la01|h|max| 3
2 |h|max|1 1254 4 44 4

la01|h|max| 3
2 |h|max| 1

3 864 3 23 4
la01|h|max| 3

2 |h|sum| 1
5 1470 3 25 4

la01|h|max| 3
2 |nh|max|1 1254 3 23 4

la01|h|max| 3
2 |nh|max| 1

3 864 3 25 4
la01|h|max| 3

2 |nh|sum| 1
5 1484 1470 3 2 42 169 4 27

a Results for different values of H (103, 104, 105, 106) c Sum of CPU over all iterations (s)
b Solutions proven to be optimal in bold, d Max Memory used over all iterations (MB)
solutions in italic when proven to be optimal with increased H (denoted by ✓)

Table A.5: Results from iteratively finding solutions by DP for JSSPM instances (continued)143
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Instance Bestab # Iterationsa CPUac Memoryad

la01|h|sum| 1
3 |h|max|1 1245 1232 1179 999 2 3 2 2 13 329 1878 15728 4 29 234 2050

la01|h|sum| 1
3 |h|max| 1

3 907 868 795 765 3 2 2 2 30 229 1802 11984 4 28 230 1793
la01|h|sum| 1

3 |h|sum| 1
5 1386 1366 1345 1107 3 3 2 2 29 351 1875 16961 4 35 242 2050

la01|h|sum| 1
3 |nh|max|1 1234 1216 1173 1155 2 3 2 2 12 323 1834 14952 4 28 235 2012

la01|h|sum| 1
3 |nh|max| 1

3 811 782 765 - 3 2 2 1 26 202 1160 3100 4 26 214 1445
la01|h|sum| 1

3 |nh|sum| 1
5 1363 - 1310 1285 2 1 3 2 13 106 2841 16109 4 29 243 2007

la01|h|sum| 2
3 |h|max|1 764 4 17 4

la01|h|sum| 2
3 |h|max| 1

3 700 699 4 2 25 60 4 20
la01|h|sum| 2

3 |h|sum| 1
5 821 800 4 2 24 60 4 23

la01|h|sum| 2
3 |nh|max|1 777 764 4 2 24 58 4 23

la01|h|sum| 2
3 |nh|max| 1

3 699 4 19 4
la01|h|sum| 2

3 |nh|sum| 1
5 822 800 3 2 15 59 4 24

la01|nh|max|1|h|max|1 1356 1352 4 2 72 156 4 19
la01|nh|max|1|h|max| 1

3 911 901 897 4 2 2 77 367 1443 4 21 158
la01|nh|max|1|h|sum| 1

5 1608 1604 4 2 72 175 5 23
la01|nh|max|1|nh|max|1 1367 1352 3 2 55 191 4 24
la01|nh|max|1|nh|max| 1

3 906 898 897 3 2 2 56 368 1473 4 20 158
la01|nh|max|1|nh|sum| 1

5 1606 1604 3 2 56 193 4 23

la01|nh|max| 3
2 |h|max|1 1583 1254 2 2 24 211 4 33

la01|nh|max| 3
2 |h|max| 1

3 864 5 66 4
la01|nh|max| 3

2 |h|sum| 1
5 1470 4 45 4

la01|nh|max| 3
2 |nh|max|1 1254 4 45 4

la01|nh|max| 3
2 |nh|max| 1

3 864 4 45 4
la01|nh|max| 3

2 |nh|sum| 1
5 1470 4 47 4

la01|nh|sum| 1
3 |h|max|1 1151 - - 1014 2 1 1 2 14 101 882 17155 4 29 239 2071

la01|nh|sum| 1
3 |h|max| 1

3 886 765 - - 3 2 1 1 28 224 496 2695 4 28 177 1252
la01|nh|sum| 1

3 |h|sum| 1
5 1438 - 1068 - 5 1 2 1 66 125 1953 4680 5 36 294 1606

la01|nh|sum| 1
3 |nh|max|1 1233 - 1199 999 3 1 2 2 28 104 1874 16121 4 28 230 2052

la01|nh|sum| 1
3 |nh|max| 1

3 908 832 816 765 2 3 2 2 15 390 1883 14570 4 28 237 1897
la01|nh|sum| 1

3 |nh|sum| 1
5 1448 - 1388 1107 2 1 2 2 15 144 2364 18422 4 33 279 2570

a Results for different values of H (103, 104, 105, 106) c Sum of CPU over all iterations (s)
b Solutions proven to be optimal in bold, d Max Memory used over all iterations (MB)
solutions in italic when proven to be optimal with increased H (denoted by ✓)

Table A.5: Results from iteratively finding solutions by DP for JSSPM instances (continued)
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Instance Bestab # Iterationsa CPUac Memoryad

la01|nh|sum| 2
3 |h|max|1 764 3 11 4

la01|nh|sum| 2
3 |h|max| 1

3 700 699 2 2 9 60 4 20
la01|nh|sum| 2

3 |h|sum| 1
5 800 3 11 5

la01|nh|sum| 2
3 |nh|max|1 764 4 18 4

la01|nh|sum| 2
3 |nh|max| 1

3 703 699 3 2 15 63 4 21
la01|nh|sum| 2

3 |nh|sum| 1
5 800 3 9 4

la02|h|max|1|h|max|1 1317 1249 3 2 38 159 5 22
la02|h|max|1|h|max| 1

3 871 853 4 2 69 142 5 18
la02|h|max|1|h|sum| 1

5 1570 1417 4 2 67 219 4 31
la02|h|max|1|nh|max|1 1336 1249 3 2 42 191 5 25
la02|h|max|1|nh|max| 1

3 899 853 3 2 44 197 4 23
la02|h|max|1|nh|sum| 1

5 1417 4 53 4

la02|h|max| 3
2 |h|max|1 1051 3 18 4

la02|h|max| 3
2 |h|max| 1

3 787 4 33 4
la02|h|max| 3

2 |h|sum| 1
5 1168 1163 3 2 29 94 4 21

la02|h|max| 3
2 |nh|max|1 1078 1051 4 2 46 117 4 23

la02|h|max| 3
2 |nh|max| 1

3 787 ✓ 3 1 20 2 4 2
la02|h|max| 3

2 |nh|sum| 1
5 1189 1163 3 2 32 120 4 24

la02|h|sum| 1
3 |h|max|1 1339 1330 1227 972 2 2 2 2 16 253 2198 17828 4 29 238 2004

la02|h|sum| 1
3 |h|max| 1

3 754 - - - 3 1 1 1 24 67 524 3627 5 23 194 1497
la02|h|sum| 1

3 |h|sum| 1
5 1515 1479 1357 1056 4 2 2 2 52 300 2491 19031 5 36 289 1999

la02|h|sum| 1
3 |nh|max|1 1212 - - 972 3 1 1 2 32 120 1057 18004 5 29 237 2006

la02|h|sum| 1
3 |nh|max| 1

3 847 - 754 - 3 1 2 1 30 113 1848 3810 4 29 236 1510
la02|h|sum| 1

3 |nh|sum| 1
5 1530 1400 - 1307 2 3 1 2 17 427 1243 21022 4 34 285 2430

la02|h|sum| 2
3 |h|max|1 754 3 12 5

la02|h|sum| 2
3 |h|max| 1

3 688 3 11 5
la02|h|sum| 2

3 |h|sum| 1
5 782 - ✓ 4 1 1 22 10 10 5 13 12

la02|h|sum| 2
3 |nh|max|1 754 3 11 5

la02|h|sum| 2
3 |nh|max| 1

3 688 3 12 5
la02|h|sum| 2

3 |nh|sum| 1
5 886 782 ✓ 4 2 1 26 87 12 5 27 16

a Results for different values of H (103, 104, 105, 106) c Sum of CPU over all iterations (s)
b Solutions proven to be optimal in bold, d Max Memory used over all iterations (MB)
solutions in italic when proven to be optimal with increased H (denoted by ✓)

Table A.5: Results from iteratively finding solutions by DP for JSSPM instances (continued)145
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Instance Bestab # Iterationsa CPUac Memoryad

la02|nh|max|1|h|max|1 1302 - 1260 3 1 2 39 135 1167 5 20 151
la02|nh|max|1|h|max| 1

3 914 853 3 2 50 219 5 24
la02|nh|max|1|h|sum| 1

5 1509 - 1428 4 1 2 67 173 1580 5 26 206
la02|nh|max|1|nh|max|1 1324 1249 4 2 69 173 4 22
la02|nh|max|1|nh|max| 1

3 1059 853 2 3 24 441 4 29
la02|nh|max|1|nh|sum| 1

5 1420 1417 3 2 38 123 4 20

la02|nh|max| 3
2 |h|max|1 1076 1051 3 2 34 110 4 22

la02|nh|max| 3
2 |h|max| 1

3 804 795 787 4 2 2 46 224 966 4 22 161
la02|nh|max| 3

2 |h|sum| 1
5 1200 - 1163 4 1 2 50 116 1073 4 23 197

la02|nh|max| 3
2 |nh|max|1 1077 1051 3 2 33 114 4 23

la02|nh|max| 3
2 |nh|max| 1

3 792 - 787 4 1 2 50 108 982 4 21 161
la02|nh|max| 3

2 |nh|sum| 1
5 1163 3 21 4

la02|nh|sum| 1
3 |h|max|1 1303 - 1235 988 3 1 3 2 33 128 3637 18704 4 28 239 2021

la02|nh|sum| 1
3 |h|max| 1

3 823 - 754 - 3 1 2 1 32 116 1751 3719 4 28 231 1358
la02|nh|sum| 1

3 |h|sum| 1
5 1235 - 1056 - 4 1 2 1 49 116 2004 6646 5 28 232 1684

la02|nh|sum| 1
3 |nh|max|1 1385 - 1213 988 2 1 2 2 18 148 2614 18568 5 33 286 2012

la02|nh|sum| 1
3 |nh|max| 1

3 888 754 - - 3 2 1 1 33 238 603 3957 4 29 183 1383
la02|nh|sum| 1

3 |nh|sum| 1
5 1371 - 1036 - 3 1 2 1 34 138 2090 6108 4 33 283 1623

la02|nh|sum| 2
3 |h|max|1 838 754 3 2 17 73 5 27

la02|nh|sum| 2
3 |h|max| 1

3 688 4 19 5
la02|nh|sum| 2

3 |h|sum| 1
5 834 782 ✓ 4 2 1 23 73 10 4 25 12

la02|nh|sum| 2
3 |nh|max|1 848 754 3 2 17 75 4 27

la02|nh|sum| 2
3 |nh|max| 1

3 688 4 19 5
la02|nh|sum| 2

3 |nh|sum| 1
5 782 - ✓ 3 1 1 13 11 12 4 15 16

la03|h|max|1|h|max|1 1158 3 26 5
la03|h|max|1|h|max| 1

3 910 811 800 ✓ 3 3 2 1 41 546 2166 3151 4 28 158 745
la03|h|max|1|h|sum| 1

5 1320 5 72 5
la03|h|max|1|nh|max|1 1146 4 42 4
la03|h|max|1|nh|max| 1

3 814 798 - - 3 2 1 1 41 297 956 5062 4 21 152 1257
la03|h|max|1|nh|sum| 1

5 1446 1320 3 2 37 233 4 33
a Results for different values of H (103, 104, 105, 106) c Sum of CPU over all iterations (s)
b Solutions proven to be optimal in bold, d Max Memory used over all iterations (MB)
solutions in italic when proven to be optimal with increased H (denoted by ✓)

Table A.5: Results from iteratively finding solutions by DP for JSSPM instances (continued)
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Instance Bestab # Iterationsa CPUac Memoryad

la03|h|max| 3
2 |h|max|1 982 952 3 2 29 126 4 22

la03|h|max| 3
2 |h|max| 1

3 755 723 - 721 4 2 1 2 51 255 766 6596 4 24 149 1319
la03|h|max| 3

2 |h|sum| 1
5 1060 3 19 4

la03|h|max| 3
2 |nh|max|1 944 4 31 4

la03|h|max| 3
2 |nh|max| 1

3 753 722 - 717 4 2 1 2 54 262 811 6950 4 25 151 1344
la03|h|max| 3

2 |nh|sum| 1
5 1113 1060 3 2 35 141 5 23

la03|h|sum| 1
3 |h|max|1 1085 - 951 882 4 1 2 2 42 112 2001 15983 4 29 218 1923

la03|h|sum| 1
3 |h|max| 1

3 761 - 695 681 5 1 3 2 55 113 2232 7098 5 29 233 1434
la03|h|sum| 1

3 |h|sum| 1
5 1256 1229 1221 963 4 2 2 2 48 254 2225 17169 5 29 223 2024

la03|h|sum| 1
3 |nh|max|1 1199 1126 1097 876 3 2 2 2 29 255 2190 16436 4 28 215 1936

la03|h|sum| 1
3 |nh|max| 1

3 747 - 692 678 6 1 2 2 74 101 1834 7110 5 27 224 1422
la03|h|sum| 1

3 |nh|sum| 1
5 1372 1233 1196 963 2 2 2 2 15 263 2301 17159 4 33 230 2060

la03|h|sum| 2
3 |h|max|1 701 692 - 688 4 2 1 1 23 115 362 698 4 19 141 343

la03|h|sum| 2
3 |h|max| 1

3 632 628 3 2 17 54 5 15
la03|h|sum| 2

3 |h|sum| 1
5 784 719 - 715 3 3 1 1 16 188 377 1124 4 26 150 514

la03|h|sum| 2
3 |nh|max|1 693 692 - 686 3 2 1 1 15 109 379 756 5 19 143 383

la03|h|sum| 2
3 |nh|max| 1

3 632 627 3 2 18 53 6 16
la03|h|sum| 2

3 |nh|sum| 1
5 793 706 3 2 16 80 4 28

la03|nh|max|1|h|max|1 1249 4 50 5
la03|nh|max|1|h|max| 1

3 846 829 4 2 71 179 4 20
la03|nh|max|1|h|sum| 1

5 1441 1438 3 2 42 135 5 23
la03|nh|max|1|nh|max|1 1235 3 29 4
la03|nh|max|1|nh|max| 1

3 825 822 7 2 125 130 4 18
la03|nh|max|1|nh|sum| 1

5 1564 1438 3 2 40 252 4 32

la03|nh|max| 3
2 |h|max|1 953 ✓ 4 1 36 2 4 2

la03|nh|max| 3
2 |h|max| 1

3 723 - - ✓ 5 1 1 1 69 90 510 674 5 18 139 201
la03|nh|max| 3

2 |h|sum| 1
5 1061 ✓ 4 1 35 2 5 2

la03|nh|max| 3
2 |nh|max|1 945 ✓ 3 1 22 2 4 2

la03|nh|max| 3
2 |nh|max| 1

3 733 722 - ✓ 4 2 1 1 57 221 573 921 4 20 142 269
la03|nh|max| 3

2 |nh|sum| 1
5 1103 1061 5 2 65 147 4 22

a Results for different values of H (103, 104, 105, 106) c Sum of CPU over all iterations (s)
b Solutions proven to be optimal in bold, d Max Memory used over all iterations (MB)
solutions in italic when proven to be optimal with increased H (denoted by ✓)

Table A.5: Results from iteratively finding solutions by DP for JSSPM instances (continued)147
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Instance Bestab # Iterationsa CPUac Memoryad

la03|nh|sum| 1
3 |h|max|1 1115 941 893 882 2 2 2 2 16 259 2088 14298 4 29 219 1567

la03|nh|sum| 1
3 |h|max| 1

3 745 705 702 681 3 3 2 2 36 301 1582 7058 5 28 171 1376
la03|nh|sum| 1

3 |h|sum| 1
5 1279 1081 987 974 2 2 3 2 16 254 3223 15713 5 29 219 1675

la03|nh|sum| 1
3 |nh|max|1 1065 935 915 887 3 2 2 2 29 255 2096 16407 4 26 210 1731

la03|nh|sum| 1
3 |nh|max| 1

3 796 700 699 678 3 2 2 2 37 254 1363 7137 5 31 169 1378
la03|nh|sum| 1

3 |nh|sum| 1
5 1300 1022 - 963 4 2 1 2 54 266 1049 18689 5 29 212 1884

la03|nh|sum| 2
3 |h|max|1 725 692 - 688 3 2 1 1 15 108 297 811 4 22 150 463

la03|nh|sum| 2
3 |h|max| 1

3 632 628 3 2 19 60 6 15
la03|nh|sum| 2

3 |h|sum| 1
5 758 719 - 715 3 2 1 1 16 104 296 1137 4 24 157 744

la03|nh|sum| 2
3 |nh|max|1 693 692 - 686 3 2 1 1 15 91 316 961 4 20 153 533

la03|nh|sum| 2
3 |nh|max| 1

3 632 627 4 2 27 60 5 15
la03|nh|sum| 2

3 |nh|sum| 1
5 784 706 3 2 15 76 4 26

la04|h|max|1|h|max|1 1178 1126 3 2 40 146 5 21
la04|h|max|1|h|max| 1

3 785 753 ✓ 3 2 1 42 238 108 4 22 26
la04|h|max|1|h|sum| 1

5 1197 1186 5 2 71 115 4 19
la04|h|max|1|nh|max|1 1137 1078 ✓ 5 2 1 73 228 240 4 24 89
la04|h|max|1|nh|max| 1

3 773 740 ✓ 3 3 1 45 300 98 4 23 26
la04|h|max|1|nh|sum| 1

5 1194 1186 5 2 75 115 4 19

la04|h|max| 3
2 |h|max|1 993 972 959 4 2 2 45 196 665 4 21 152

la04|h|max| 3
2 |h|max| 1

3 733 721 - 712 4 3 1 2 52 338 692 3977 4 22 149 1237
la04|h|max| 3

2 |h|sum| 1
5 1009 - 999 3 1 3 29 83 1149 4 19 150

la04|h|max| 3
2 |nh|max|1 978 959 4 2 43 106 4 20

la04|h|max| 3
2 |nh|max| 1

3 733 728 713 707 3 2 3 1 38 259 2250 1909 5 23 167 763
la04|h|max| 3

2 |nh|sum| 1
5 1019 999 4 2 46 107 4 20

la04|h|sum| 1
3 |h|max|1 1299 878 - 861 4 2 1 2 41 196 690 8061 4 26 175 1416

la04|h|sum| 1
3 |h|max| 1

3 684 680 666 3 2 3 27 163 1228 4 22 137
la04|h|sum| 1

3 |h|sum| 1
5 1253 908 - 891 2 2 1 2 13 189 712 8505 4 26 179 1426

la04|h|sum| 1
3 |nh|max|1 1314 1249 861 - 3 2 4 1 29 229 2782 2460 4 26 218 1192

la04|h|sum| 1
3 |nh|max| 1

3 717 678 666 3 2 2 34 172 833 5 25 141
la04|h|sum| 1

3 |nh|sum| 1
5 1293 954 940 891 2 2 2 2 12 221 1788 10279 4 26 200 1600

a Results for different values of H (103, 104, 105, 106) c Sum of CPU over all iterations (s)
b Solutions proven to be optimal in bold, d Max Memory used over all iterations (MB)
solutions in italic when proven to be optimal with increased H (denoted by ✓)

Table A.5: Results from iteratively finding solutions by DP for JSSPM instances (continued)

148



A

A
JSSP

w
ith

scheduled
M
aintenances

Instance Bestab # Iterationsa CPUac Memoryad

la04|h|sum| 2
3 |h|max|1 708 693 673 3 2 2 13 94 371 4 20 152

la04|h|sum| 2
3 |h|max| 1

3 635 608 3 3 20 115 5 21
la04|h|sum| 2

3 |h|sum| 1
5 710 703 683 4 2 2 18 95 388 4 20 153

la04|h|sum| 2
3 |nh|max|1 705 685 667 3 2 2 16 95 325 4 21 149

la04|h|sum| 2
3 |nh|max| 1

3 632 608 3 3 20 115 5 20
la04|h|sum| 2

3 |nh|sum| 1
5 710 701 680 3 3 2 15 143 409 4 21 151

la04|nh|max|1|h|max|1 1150 1126 4 2 56 129 4 20
la04|nh|max|1|h|max| 1

3 769 767 756 4 2 2 58 244 951 4 17 139
la04|nh|max|1|h|sum| 1

5 1199 1186 6 2 85 126 5 20
la04|nh|max|1|nh|max|1 1107 - 1080 4 1 2 55 127 1240 4 21 159
la04|nh|max|1|nh|max| 1

3 782 753 - ✓ 4 3 1 1 62 402 649 892 4 22 139 235
la04|nh|max|1|nh|sum| 1

5 1186 4 44 4

la04|nh|max| 3
2 |h|max|1 1013 993 972 ✓ 4 2 2 1 47 228 1249 607 4 21 154 239

la04|nh|max| 3
2 |h|max| 1

3 733 - - 727 3 1 1 2 36 123 862 5849 4 21 148 1303
la04|nh|max| 3

2 |h|sum| 1
5 1054 1033 1012 ✓ 4 2 2 1 47 228 1231 624 4 21 154 251

la04|nh|max| 3
2 |nh|max|1 978 - 959 5 1 2 56 96 721 4 19 150

la04|nh|max| 3
2 |nh|max| 1

3 728 - - 716 3 1 1 2 35 121 875 5590 4 21 154 1315
la04|nh|max| 3

2 |nh|sum| 1
5 1027 1003 999 4 3 2 44 248 448 4 19 139

la04|nh|sum| 1
3 |h|max|1 1139 910 892 861 2 4 2 2 13 465 1634 7743 4 27 195 1435

la04|nh|sum| 1
3 |h|max| 1

3 693 684 671 ✓ 3 2 2 1 30 167 1223 474 5 24 144 110
la04|nh|sum| 1

3 |h|sum| 1
5 1349 908 - 891 4 2 1 2 44 197 724 7098 4 26 174 1333

la04|nh|sum| 1
3 |nh|max|1 1280 1275 873 861 3 2 2 2 31 233 1717 7741 4 27 222 1345

la04|nh|sum| 1
3 |nh|max| 1

3 691 - 666 4 1 4 43 88 2300 4 24 162
la04|nh|sum| 1

3 |nh|sum| 1
5 1188 908 - 891 2 2 1 2 14 197 764 8379 4 26 179 1401

la04|nh|sum| 2
3 |h|max|1 700 698 673 3 2 2 15 94 421 4 20 158

la04|nh|sum| 2
3 |h|max| 1

3 628 608 4 3 27 93 5 19
la04|nh|sum| 2

3 |h|sum| 1
5 710 703 683 3 2 2 17 92 365 4 20 152

la04|nh|sum| 2
3 |nh|max|1 701 688 667 3 2 2 16 94 353 4 21 151

la04|nh|sum| 2
3 |nh|max| 1

3 634 608 3 3 21 119 5 21
la04|nh|sum| 2

3 |nh|sum| 1
5 710 701 680 4 2 2 21 92 394 4 20 150

a Results for different values of H (103, 104, 105, 106) c Sum of CPU over all iterations (s)
b Solutions proven to be optimal in bold, d Max Memory used over all iterations (MB)
solutions in italic when proven to be optimal with increased H (denoted by ✓)
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C
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putational
R

esults

Instance Bestab # Iterationsa CPUac Memoryad

la05|h|max|1|h|max|1 1175 3 26 4
la05|h|max|1|h|max| 1

3 791 3 28 5
la05|h|max|1|h|sum| 1

5 1307 3 26 4
la05|h|max|1|nh|max|1 1175 3 28 5
la05|h|max|1|nh|max| 1

3 791 3 26 4
la05|h|max|1|nh|sum| 1

5 1307 3 21 4

la05|h|max| 3
2 |h|max|1 981 3 16 4

la05|h|max| 3
2 |h|max| 1

3 725 3 22 5
la05|h|max| 3

2 |h|sum| 1
5 1069 3 15 4

la05|h|max| 3
2 |nh|max|1 981 3 22 5

la05|h|max| 3
2 |nh|max| 1

3 725 3 23 5
la05|h|max| 3

2 |nh|sum| 1
5 1069 3 14 4

la05|h|sum| 1
3 |h|max|1 1209 884 - 799 2 3 1 3 15 323 648 17122 5 31 210 1704

la05|h|sum| 1
3 |h|max| 1

3 884 777 692 666 4 2 2 2 43 234 1648 9458 4 29 228 1616
la05|h|sum| 1

3 |h|sum| 1
5 1286 1270 879 - 2 2 2 1 14 245 1650 5984 4 30 243 1556

la05|h|sum| 1
3 |nh|max|1 1155 - 835 - 2 1 3 1 14 115 2644 6086 5 29 244 1657

la05|h|sum| 1
3 |nh|max| 1

3 777 768 692 666 6 2 2 2 75 199 1505 10038 5 28 221 1605
la05|h|sum| 1

3 |nh|sum| 1
5 1238 1217 879 838 3 3 2 3 26 328 1619 16205 4 27 238 1708

la05|h|sum| 2
3 |h|max|1 690 2 1 5

la05|h|sum| 2
3 |h|max| 1

3 626 2 2 5
la05|h|sum| 2

3 |h|sum| 1
5 712 2 1 5

la05|h|sum| 2
3 |nh|max|1 690 2 2 5

la05|h|sum| 2
3 |nh|max| 1

3 626 2 1 5
la05|h|sum| 2

3 |nh|sum| 1
5 712 2 2 5

la05|nh|max|1|h|max|1 1175 3 27 4
la05|nh|max|1|h|max| 1

3 791 3 28 4
la05|nh|max|1|h|sum| 1

5 1307 3 27 5
la05|nh|max|1|nh|max|1 1175 3 28 5
la05|nh|max|1|nh|max| 1

3 791 3 28 5
la05|nh|max|1|nh|sum| 1

5 1307 3 29 5
a Results for different values of H (103, 104, 105, 106) c Sum of CPU over all iterations (s)
b Solutions proven to be optimal in bold, d Max Memory used over all iterations (MB)
solutions in italic when proven to be optimal with increased H (denoted by ✓)

Table A.5: Results from iteratively finding solutions by DP for JSSPM instances (continued)
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Instance Bestab # Iterationsa CPUac Memoryad

la05|nh|max| 3
2 |h|max|1 981 3 20 4

la05|nh|max| 3
2 |h|max| 1

3 725 3 21 4
la05|nh|max| 3

2 |h|sum| 1
5 1069 3 18 4

la05|nh|max| 3
2 |nh|max|1 981 3 17 4

la05|nh|max| 3
2 |nh|max| 1

3 725 3 25 5
la05|nh|max| 3

2 |nh|sum| 1
5 1069 2 1 4

la05|nh|sum| 1
3 |h|max|1 884 - 835 - 3 1 2 1 26 105 1629 5891 4 26 197 1406

la05|nh|sum| 1
3 |h|max| 1

3 805 692 - 666 3 2 1 2 33 224 536 10399 4 30 177 1574
la05|nh|sum| 1

3 |h|sum| 1
5 950 889 - ✓ 3 2 1 1 27 169 597 1514 5 26 167 546

la05|nh|sum| 1
3 |nh|max|1 1256 884 835 - 4 2 2 1 45 245 1779 6960 4 29 194 1539

la05|nh|sum| 1
3 |nh|max| 1

3 792 780 745 670 4 2 2 4 51 250 2029 29849 4 29 228 2017
la05|nh|sum| 1

3 |nh|sum| 1
5 1344 1306 879 - 3 2 2 1 29 268 2023 6851 4 27 215 1527

la05|nh|sum| 2
3 |h|max|1 690 2 2 5

la05|nh|sum| 2
3 |h|max| 1

3 626 2 2 4
la05|nh|sum| 2

3 |h|sum| 1
5 712 2 1 4

la05|nh|sum| 2
3 |nh|max|1 690 2 2 4

la05|nh|sum| 2
3 |nh|max| 1

3 626 2 1 5
la05|nh|sum| 2

3 |nh|sum| 1
5 712 2 2 4

a Results for different values of H (103, 104, 105, 106) c Sum of CPU over all iterations (s)
b Solutions proven to be optimal in bold, d Max Memory used over all iterations (MB)
solutions in italic when proven to be optimal with increased H (denoted by ✓)

Table A.5: Results from iteratively finding solutions by DP for JSSPM instances (continued)
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A

Computational Results

Instance Lower bound # Iterations CPUa Memoryb

la01|h|sum| 1
3 |h|max|1 862 10 393 163

la01|h|sum| 1
3 |h|max| 1

3 732 10 153 130
la01|h|sum| 1

3 |h|sum| 1
5 934 10 403 160

la01|h|sum| 1
3 |nh|max|1 862 10 359 135

la01|h|sum| 1
3 |nh|max| 1

3 732 10 160 138
la01|h|sum| 1

3 |nh|sum| 1
5 934 10 195 213

la01|nh|sum| 1
3 |h|max|1 901 9 582 130

la01|nh|sum| 1
3 |h|max| 1

3 732 10 205 146
la01|nh|sum| 1

3 |h|sum| 1
5 977 9 857 146

la01|nh|sum| 1
3 |nh|max|1 893 10 855 139

la01|nh|sum| 1
3 |nh|max| 1

3 732 10 183 132
la01|nh|sum| 1

3 |nh|sum| 1
5 954 10 867 125

la02|h|sum| 1
3 |h|max|1 853 9 292 136

la02|h|sum| 1
3 |h|max| 1

3 721 10 165 148
la02|h|sum| 1

3 |h|sum| 1
5 909 9 349 138

la02|h|sum| 1
3 |nh|max|1 853 9 295 142

la02|h|sum| 1
3 |nh|max| 1

3 721 10 142 132
la02|h|sum| 1

3 |nh|sum| 1
5 909 10 451 145

la02|nh|sum| 1
3 |h|max|1 882 10 979 125

la02|nh|sum| 1
3 |h|max| 1

3 721 10 154 111
la02|nh|sum| 1

3 |h|sum| 1
5 942 10 1178 127

la02|nh|sum| 1
3 |nh|max|1 873 10 961 143

la02|nh|sum| 1
3 |nh|max| 1

3 721 10 167 120
la02|nh|sum| 1

3 |nh|sum| 1
5 909 10 300 132

la03|h|max|1|nh|max| 1
3 792 10 374 144

la03|h|sum| 1
3 |h|max|1 775 9 525 131

la03|h|sum| 1
3 |h|sum| 1

5 834 10 792 131
la03|h|sum| 1

3 |nh|max|1 767 10 399 135
la03|h|sum| 1

3 |nh|sum| 1
5 824 10 270 163

la03|nh|sum| 1
3 |h|max|1 814 10 1139 133

la03|nh|sum| 1
3 |h|sum| 1

5 871 10 1207 125
la03|nh|sum| 1

3 |nh|max|1 805 9 980 145
la03|nh|sum| 1

3 |nh|sum| 1
5 844 9 804 140

la04|h|sum| 1
3 |nh|max|1 810 10 729 128

la04|h|sum| 1
3 |nh|sum| 1

5 845 10 996 139

la05|h|sum| 1
3 |h|max|1 787 10 146 106

la05|h|sum| 1
3 |h|max| 1

3 659 9 154 154
la05|h|sum| 1

3 |h|sum| 1
5 831 10 274 157

la05|h|sum| 1
3 |nh|max|1 787 10 277 168

la05|h|sum| 1
3 |nh|max| 1

3 659 9 151 150
la05|h|sum| 1

3 |nh|sum| 1
5 831 9 130 135

la05|nh|sum| 1
3 |h|max|1 787 10 301 150

la05|nh|sum| 1
3 |h|max| 1

3 659 9 153 132
la05|nh|sum| 1

3 |nh|max|1 787 10 288 161
la05|nh|sum| 1

3 |nh|max| 1
3 659 10 76 129

la05|nh|sum| 1
3 |nh|sum| 1

5 831 10 262 150
a Sum of CPU over all iterations (s) b Max Memory used over all iterations (MB)

Table A.6: Results from iteratively finding lower bound by DP for
JSSPM instances
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A

A JSSP with scheduled Maintenances

Instance MIP Using Gurobi 5.6.3 DP

LB UB CPU (s) UB at (s) LB UB CPU (s)

ft06|h|max|1|h|max|1 98 24 9 98 47
ft06|h|max|1|h|max| 1

3 71 17 14 71 7
ft06|h|max|1|h|sum| 1

5 94 48 14 94 41
ft06|h|max|1|nh|max|1 97 76 72 97 11
ft06|h|max|1|nh|max| 1

3 71 18 12 71 8
ft06|h|max|1|nh|sum| 1

5 88 23 19 88 8

ft06|h|max| 3
2 |h|max|1 79 26 23 79 4

ft06|h|max| 3
2 |h|max| 1

3 64 104 62 64 6
ft06|h|max| 3

2 |h|sum| 1
5 76 100 18 76 5

ft06|h|max| 3
2 |nh|max|1 79 32 20 79 2

ft06|h|max| 3
2 |nh|max| 1

3 64 156 78 64 6
ft06|h|max| 3

2 |nh|sum| 1
5 76 27 24 76 5

ft06|h|sum| 1
3 |h|max|1 79 26 23 79 4

ft06|h|sum| 1
3 |h|max| 1

3 64 102 61 64 5
ft06|h|sum| 1

3 |h|sum| 1
5 76 100 18 76 5

ft06|h|sum| 1
3 |nh|max|1 79 32 20 79 3

ft06|h|sum| 1
3 |nh|max| 1

3 64 156 78 64 4
ft06|h|sum| 1

3 |nh|sum| 1
5 76 27 23 76 5

ft06|h|sum| 2
3 |h|max|1 65 23 18 65 1

ft06|h|sum| 2
3 |h|max| 1

3 59 118 18 59 0
ft06|h|sum| 2

3 |h|sum| 1
5 64 15 11 64 1

ft06|h|sum| 2
3 |nh|max|1 65 22 17 65 0

ft06|h|sum| 2
3 |nh|max| 1

3 59 383 22 59 1
ft06|h|sum| 2

3 |nh|sum| 1
5 63 35 23 63 0

ft06|nh|max|1|h|max|1 100 22 15 100 54
ft06|nh|max|1|h|max| 1

3 71 77 77 71 7
ft06|nh|max|1|h|sum| 1

5 95 26 26 95 46
ft06|nh|max|1|nh|max|1 99 28 6 99 52
ft06|nh|max|1|nh|max| 1

3 71 22 21 71 7
ft06|nh|max|1|nh|sum| 1

5 89 21 18 89 8

ft06|nh|max| 3
2 |h|max|1 79 36 35 79 5

ft06|nh|max| 3
2 |h|max| 1

3 64 60 23 64 6
ft06|nh|max| 3

2 |h|sum| 1
5 76 47 43 76 5

ft06|nh|max| 3
2 |nh|max|1 79 25 18 79 5

ft06|nh|max| 3
2 |nh|max| 1

3 64 212 71 64 4
ft06|nh|max| 3

2 |nh|sum| 1
5 76 34 19 76 5

ft06|nh|sum| 1
3 |h|max|1 88 233 230 88 38

ft06|nh|sum| 1
3 |h|max| 1

3 67 150 34 67 6
ft06|nh|sum| 1

3 |h|sum| 1
5 86 230 53 86 27

ft06|nh|sum| 1
3 |nh|max|1 86 146 103 86 33

ft06|nh|sum| 1
3 |nh|max| 1

3 66 329 114 66 8
ft06|nh|sum| 1

3 |nh|sum| 1
5 79 53 39 79 8

ft06|nh|sum| 2
3 |h|max|1 66 54 39 66 1

ft06|nh|sum| 2
3 |h|max| 1

3 60 312 19 60 4
ft06|nh|sum| 2

3 |h|sum| 1
5 65 48 13 65 1

ft06|nh|sum| 2
3 |nh|max|1 66 41 19 66 2

ft06|nh|sum| 2
3 |nh|max| 1

3 59 70 53 59 4
ft06|nh|sum| 2

3 |nh|sum| 1
5 64 42 28 64 1

Table A.7: Comparison MIP and DP for JSSPM instances
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A

Computational Results

Instance MIP Using Gurobi 5.6.3 DP

LB UB CPU (s) UB at (s) LB UB CPU (s)

la01|h|max|1|h|max|1 1336 1352 7200 3121 1352 230
la01|h|max|1|h|max| 1

3 413 926 7200 2027 897 1887
la01|h|max|1|h|sum| 1

5 1588 1604 7200 7164 1604 2016
la01|h|max|1|nh|max|1 442 1367 7200 4810 1352 266
la01|h|max|1|nh|max| 1

3 413 930 7200 496 897 1976
la01|h|max|1|nh|sum| 1

5 897 1604 7200 4349 1604 32

la01|h|max| 3
2 |h|max|1 413 1254 7200 981 1254 44

la01|h|max| 3
2 |h|max| 1

3 413 864 7200 474 864 23
la01|h|max| 3

2 |h|sum| 1
5 875 1470 7200 503 1470 25

la01|h|max| 3
2 |nh|max|1 468 1254 7200 2555 1254 23

la01|h|max| 3
2 |nh|max| 1

3 413 883 7200 3378 864 25
la01|h|max| 3

2 |nh|sum| 1
5 567 1470 7200 366 1470 211

la01|h|sum| 1
3 |h|max|1 413 1001 7200 5551 862 999 18341

la01|h|sum| 1
3 |h|max| 1

3 413 780 7200 6933 732 765 14198
la01|h|sum| 1

3 |h|sum| 1
5 966 1068 7200 7015 934 1107 19619

la01|h|sum| 1
3 |nh|max|1 484 993 7200 3405 862 1155 17480

la01|h|sum| 1
3 |nh|max| 1

3 437 765 7200 5232 732 765 4648
la01|h|sum| 1

3 |nh|sum| 1
5 480 1068 7200 2205 934 1285 19264

la01|h|sum| 2
3 |h|max|1 452 824 7200 2983 764 17

la01|h|sum| 2
3 |h|max| 1

3 550 699 7200 6298 699 85
la01|h|sum| 2

3 |h|sum| 1
5 564 877 7200 7169 800 84

la01|h|sum| 2
3 |nh|max|1 530 800 7200 2958 764 82

la01|h|sum| 2
3 |nh|max| 1

3 413 699 7200 1298 699 19
la01|h|sum| 2

3 |nh|sum| 1
5 413 881 7200 7163 800 74

la01|nh|max|1|h|max|1 577 1369 7200 1521 1352 228
la01|nh|max|1|h|max| 1

3 413 930 7200 411 897 1887
la01|nh|max|1|h|sum| 1

5 515 1738 7200 994 1604 247
la01|nh|max|1|nh|max|1 413 1379 7200 3972 1352 246
la01|nh|max|1|nh|max| 1

3 413 920 7200 6187 897 1897
la01|nh|max|1|nh|sum| 1

5 880 1604 7200 1010 1604 249

la01|nh|max| 3
2 |h|max|1 542 1254 7200 1360 1254 235

la01|nh|max| 3
2 |h|max| 1

3 413 897 7200 6450 864 66
la01|nh|max| 3

2 |h|sum| 1
5 514 1470 7200 1092 1470 45

la01|nh|max| 3
2 |nh|max|1 442 1254 7200 1872 1254 45

la01|nh|max| 3
2 |nh|max| 1

3 413 864 7200 974 864 45
la01|nh|max| 3

2 |nh|sum| 1
5 515 1470 7200 851 1470 47

la01|nh|sum| 1
3 |h|max|1 413 1026 7200 2919 901 1014 18734

la01|nh|sum| 1
3 |h|max| 1

3 413 765 7200 3894 732 765 3648
la01|nh|sum| 1

3 |h|sum| 1
5 464 1068 7200 1139 977 1068 7681

la01|nh|sum| 1
3 |nh|max|1 699 993 7200 2767 893 999 18982

la01|nh|sum| 1
3 |nh|max| 1

3 521 775 7200 1565 732 765 17041
la01|nh|sum| 1

3 |nh|sum| 1
5 429 1068 7200 3266 954 1107 21812

la01|nh|sum| 2
3 |h|max|1 575 805 7200 1428 764 11

la01|nh|sum| 2
3 |h|max| 1

3 413 723 7200 3708 699 69
la01|nh|sum| 2

3 |h|sum| 1
5 540 800 7200 687 800 11

la01|nh|sum| 2
3 |nh|max|1 542 764 7200 4924 764 18

la01|nh|sum| 2
3 |nh|max| 1

3 413 743 7200 7084 699 78
la01|nh|sum| 2

3 |nh|sum| 1
5 800 4474 2801 800 9

Table A.7: Comparison MIP and DP for JSSPM instances (continued)
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A

A JSSP with scheduled Maintenances

Instance MIP Using Gurobi 5.6.3 DP

LB UB CPU (s) UB at (s) LB UB CPU (s)

la02|h|max|1|h|max|1 394 1308 7200 5803 1249 197
la02|h|max|1|h|max| 1

3 394 889 7200 6107 853 211
la02|h|max|1|h|sum| 1

5 487 1587 7200 1185 1417 286
la02|h|max|1|nh|max|1 560 1381 7200 2121 1249 233
la02|h|max|1|nh|max| 1

3 394 929 7200 7175 853 241
la02|h|max|1|nh|sum| 1

5 394 1557 7200 5391 1417 53

la02|h|max| 3
2 |h|max|1 394 1150 7200 2784 1051 18

la02|h|max| 3
2 |h|max| 1

3 394 853 7200 5553 787 33
la02|h|max| 3

2 |h|sum| 1
5 407 1397 7200 2357 1163 123

la02|h|max| 3
2 |nh|max|1 889 1075 7200 6635 1051 163

la02|h|max| 3
2 |nh|max| 1

3 394 818 7200 6711 787 22
la02|h|max| 3

2 |nh|sum| 1
5 394 1245 7200 6651 1163 152

la02|h|sum| 1
3 |h|max|1 394 993 7200 7187 853 972 20587

la02|h|sum| 1
3 |h|max| 1

3 394 761 7200 6926 721 754 4407
la02|h|sum| 1

3 |h|sum| 1
5 933 1036 7200 2611 909 1056 22223

la02|h|sum| 1
3 |nh|max|1 394 1051 7200 5009 853 972 19508

la02|h|sum| 1
3 |nh|max| 1

3 394 822 7200 1985 721 754 5943
la02|h|sum| 1

3 |nh|sum| 1
5 818 1036 7200 3584 909 1307 23160

la02|h|sum| 2
3 |h|max|1 588 754 7200 2006 754 12

la02|h|sum| 2
3 |h|max| 1

3 394 754 7200 4350 688 11
la02|h|sum| 2

3 |h|sum| 1
5 627 861 7200 5105 782 42

la02|h|sum| 2
3 |nh|max|1 623 754 7200 4865 754 11

la02|h|sum| 2
3 |nh|max| 1

3 394 721 7200 3967 688 12
la02|h|sum| 2

3 |nh|sum| 1
5 645 782 7200 6903 782 125

la02|nh|max|1|h|max|1 407 1465 7200 7142 1260 1341
la02|nh|max|1|h|max| 1

3 394 916 7200 5098 853 269
la02|nh|max|1|h|sum| 1

5 435 1613 7200 734 1428 1820
la02|nh|max|1|nh|max|1 394 1407 7200 6801 1249 242
la02|nh|max|1|nh|max| 1

3 394 886 7200 3892 853 465
la02|nh|max|1|nh|sum| 1

5 394 1544 7200 445 1417 161

la02|nh|max| 3
2 |h|max|1 414 1198 7200 7136 1051 144

la02|nh|max| 3
2 |h|max| 1

3 394 837 7200 5507 787 1236
la02|nh|max| 3

2 |h|sum| 1
5 394 1329 7200 7175 1163 1239

la02|nh|max| 3
2 |nh|max|1 394 1180 7200 3264 1051 147

la02|nh|max| 3
2 |nh|max| 1

3 394 820 7200 7015 787 1140
la02|nh|max| 3

2 |nh|sum| 1
5 471 1163 7200 2880 1163 21

la02|nh|sum| 1
3 |h|max|1 494 1063 7200 6291 882 988 23481

la02|nh|sum| 1
3 |h|max| 1

3 394 765 7200 4697 721 754 5772
la02|nh|sum| 1

3 |h|sum| 1
5 491 1112 7200 4527 942 1056 9993

la02|nh|sum| 1
3 |nh|max|1 394 1080 7200 1655 873 988 22309

la02|nh|sum| 1
3 |nh|max| 1

3 394 824 7200 1120 721 754 4998
la02|nh|sum| 1

3 |nh|sum| 1
5 761 1036 7200 1830 909 1036 8670

la02|nh|sum| 2
3 |h|max|1 599 769 7200 5918 754 90

la02|nh|sum| 2
3 |h|max| 1

3 394 753 7200 6334 688 19
la02|nh|sum| 2

3 |h|sum| 1
5 394 961 7200 6998 782 106

la02|nh|sum| 2
3 |nh|max|1 394 794 7200 6751 754 92

la02|nh|sum| 2
3 |nh|max| 1

3 394 754 7200 2158 688 19
la02|nh|sum| 2

3 |nh|sum| 1
5 394 1036 7200 3941 782 36

Table A.7: Comparison MIP and DP for JSSPM instances (continued)
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Computational Results

Instance MIP Using Gurobi 5.6.3 DP

LB UB CPU (s) UB at (s) LB UB CPU (s)

la03|h|max|1|h|max|1 497 1316 7200 6839 1158 26
la03|h|max|1|h|max| 1

3 349 805 7200 5496 800 5904
la03|h|max|1|h|sum| 1

5 358 1506 7200 4784 1320 72
la03|h|max|1|nh|max|1 349 1211 7200 5053 1146 42
la03|h|max|1|nh|max| 1

3 349 834 7200 5944 792 798 6730
la03|h|max|1|nh|sum| 1

5 439 1464 7200 7035 1320 270

la03|h|max| 3
2 |h|max|1 349 1043 7200 3115 952 155

la03|h|max| 3
2 |h|max| 1

3 349 752 7200 7198 721 7668
la03|h|max| 3

2 |h|sum| 1
5 526 1178 7200 1671 1060 19

la03|h|max| 3
2 |nh|max|1 368 1033 7200 3649 944 31

la03|h|max| 3
2 |nh|max| 1

3 349 783 7200 5465 717 8077
la03|h|max| 3

2 |nh|sum| 1
5 384 1082 7200 4617 1060 176

la03|h|sum| 1
3 |h|max|1 349 861 7200 3670 775 882 18663

la03|h|sum| 1
3 |h|max| 1

3 349 748 7200 1648 681 9498
la03|h|sum| 1

3 |h|sum| 1
5 494 946 7200 5994 834 963 20488

la03|h|sum| 1
3 |nh|max|1 433 855 7200 4699 767 876 19309

la03|h|sum| 1
3 |nh|max| 1

3 530 708 7200 6862 678 9119
la03|h|sum| 1

3 |nh|sum| 1
5 349 1060 7200 2238 824 963 20008

la03|h|sum| 2
3 |h|max|1 356 770 7200 6810 688 1198

la03|h|sum| 2
3 |h|max| 1

3 349 717 7200 4936 628 71
la03|h|sum| 2

3 |h|sum| 1
5 349 767 7200 2875 715 1705

la03|h|sum| 2
3 |nh|max|1 349 732 7200 4514 686 1259

la03|h|sum| 2
3 |nh|max| 1

3 349 708 7200 6596 627 71
la03|h|sum| 2

3 |nh|sum| 1
5 349 735 7200 6764 706 96

la03|nh|max|1|h|max|1 388 1369 7200 6380 1249 50
la03|nh|max|1|h|max| 1

3 349 885 7200 6549 829 250
la03|nh|max|1|h|sum| 1

5 349 1438 7200 5138 1438 177
la03|nh|max|1|nh|max|1 489 1300 7200 4793 1235 29
la03|nh|max|1|nh|max| 1

3 401 842 7200 4659 822 255
la03|nh|max|1|nh|sum| 1

5 390 1438 7200 3876 1438 292

la03|nh|max| 3
2 |h|max|1 349 1043 7200 4165 953 38

la03|nh|max| 3
2 |h|max| 1

3 349 789 7200 1661 723 1343
la03|nh|max| 3

2 |h|sum| 1
5 1032 1151 7200 6556 1061 37

la03|nh|max| 3
2 |nh|max|1 349 1054 7200 3052 945 24

la03|nh|max| 3
2 |nh|max| 1

3 349 786 7200 444 722 1772
la03|nh|max| 3

2 |nh|sum| 1
5 350 1061 7200 3691 1061 212

la03|nh|sum| 1
3 |h|max|1 783 870 7200 3411 814 882 17800

la03|nh|sum| 1
3 |h|max| 1

3 349 712 7200 7084 681 8977
la03|nh|sum| 1

3 |h|sum| 1
5 586 1024 7200 5808 871 974 20413

la03|nh|sum| 1
3 |nh|max|1 435 910 7200 3158 805 887 19767

la03|nh|sum| 1
3 |nh|max| 1

3 349 759 7200 3721 678 8791
la03|nh|sum| 1

3 |nh|sum| 1
5 376 943 7200 4602 844 963 20862

la03|nh|sum| 2
3 |h|max|1 358 758 7200 5874 688 1231

la03|nh|sum| 2
3 |h|max| 1

3 349 712 7200 4525 628 79
la03|nh|sum| 2

3 |h|sum| 1
5 386 824 7200 1299 715 1553

la03|nh|sum| 2
3 |nh|max|1 460 694 7200 5270 686 1383

la03|nh|sum| 2
3 |nh|max| 1

3 431 690 7200 6902 627 87
la03|nh|sum| 2

3 |nh|sum| 1
5 349 836 7200 7192 706 91

Table A.7: Comparison MIP and DP for JSSPM instances (continued)
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A JSSP with scheduled Maintenances

Instance MIP Using Gurobi 5.6.3 DP

LB UB CPU (s) UB at (s) LB UB CPU (s)

la04|h|max|1|h|max|1 412 1211 7200 1078 1126 186
la04|h|max|1|h|max| 1

3 369 895 7200 4910 753 388
la04|h|max|1|h|sum| 1

5 446 1286 7200 4720 1186 186
la04|h|max|1|nh|max|1 534 1162 7200 4966 1078 541
la04|h|max|1|nh|max| 1

3 369 842 7200 467 740 443
la04|h|max|1|nh|sum| 1

5 369 1277 7200 7170 1186 190

la04|h|max| 3
2 |h|max|1 369 1026 7200 6873 959 906

la04|h|max| 3
2 |h|max| 1

3 369 732 7200 3309 712 5059
la04|h|max| 3

2 |h|sum| 1
5 369 1150 7200 6664 999 1261

la04|h|max| 3
2 |nh|max|1 369 1019 7200 6860 959 149

la04|h|max| 3
2 |nh|max| 1

3 369 720 7200 6307 707 4456
la04|h|max| 3

2 |nh|sum| 1
5 399 999 7200 5689 999 153

la04|h|sum| 1
3 |h|max|1 575 873 7200 6573 861 8988

la04|h|sum| 1
3 |h|max| 1

3 369 743 7200 6793 666 1418
la04|h|sum| 1

3 |h|sum| 1
5 516 968 7200 2259 891 9419

la04|h|sum| 1
3 |nh|max|1 369 933 7200 1431 810 861 6229

la04|h|sum| 1
3 |nh|max| 1

3 538 709 7200 6520 666 1039
la04|h|sum| 1

3 |nh|sum| 1
5 380 946 7200 5932 845 891 13296

la04|h|sum| 2
3 |h|max|1 369 763 7200 7178 673 478

la04|h|sum| 2
3 |h|max| 1

3 492 626 7200 4319 608 135
la04|h|sum| 2

3 |h|sum| 1
5 488 737 7200 6762 683 501

la04|h|sum| 2
3 |nh|max|1 369 722 7200 6331 667 436

la04|h|sum| 2
3 |nh|max| 1

3 412 648 7200 5708 608 135
la04|h|sum| 2

3 |nh|sum| 1
5 369 783 7200 6391 680 567

la04|nh|max|1|h|max|1 369 1167 7200 6923 1126 185
la04|nh|max|1|h|max| 1

3 369 798 7200 6220 756 1253
la04|nh|max|1|h|sum| 1

5 477 1394 7200 1068 1186 211
la04|nh|max|1|nh|max|1 373 1373 7200 1099 1080 1422
la04|nh|max|1|nh|max| 1

3 369 831 7200 3328 753 2005
la04|nh|max|1|nh|sum| 1

5 369 1243 7200 6984 1186 44

la04|nh|max| 3
2 |h|max|1 379 1014 7200 6848 972 2131

la04|nh|max| 3
2 |h|max| 1

3 369 743 7200 5377 727 6870
la04|nh|max| 3

2 |h|sum| 1
5 369 1158 7200 4648 1012 2130

la04|nh|max| 3
2 |nh|max|1 369 1057 7200 2798 959 873

la04|nh|max| 3
2 |nh|max| 1

3 369 753 7200 6922 716 6621
la04|nh|max| 3

2 |nh|sum| 1
5 664 1165 7200 6958 999 740

la04|nh|sum| 1
3 |h|max|1 369 1026 7200 6839 861 9855

la04|nh|sum| 1
3 |h|max| 1

3 369 822 7200 2371 671 1894
la04|nh|sum| 1

3 |h|sum| 1
5 640 922 7200 6569 891 8063

la04|nh|sum| 1
3 |nh|max|1 369 917 7200 2455 861 9722

la04|nh|sum| 1
3 |nh|max| 1

3 369 699 7200 6981 666 2431
la04|nh|sum| 1

3 |nh|sum| 1
5 369 945 7200 4575 891 9354

la04|nh|sum| 2
3 |h|max|1 369 791 7200 4700 673 530

la04|nh|sum| 2
3 |h|max| 1

3 369 649 7200 5322 608 120
la04|nh|sum| 2

3 |h|sum| 1
5 519 695 7200 7175 683 474

la04|nh|sum| 2
3 |nh|max|1 369 771 7200 6708 667 463

la04|nh|sum| 2
3 |nh|max| 1

3 369 708 7200 1624 608 140
la04|nh|sum| 2

3 |nh|sum| 1
5 431 746 7200 4587 680 507

Table A.7: Comparison MIP and DP for JSSPM instances (continued)
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Computational Results

Instance MIP Using Gurobi 5.6.3 DP

LB UB CPU (s) UB at (s) LB UB CPU (s)

la05|h|max|1|h|max|1 1144 1175 7200 5474 1175 26
la05|h|max|1|h|max| 1

3 380 791 7200 897 791 28
la05|h|max|1|h|sum| 1

5 380 1307 7200 5513 1307 26
la05|h|max|1|nh|max|1 766 1175 7200 663 1175 28
la05|h|max|1|nh|max| 1

3 380 791 7200 4212 791 26
la05|h|max|1|nh|sum| 1

5 1307 3096 855 1307 21

la05|h|max| 3
2 |h|max|1 380 981 7200 6103 981 16

la05|h|max| 3
2 |h|max| 1

3 380 725 7200 1941 725 22
la05|h|max| 3

2 |h|sum| 1
5 536 1069 7200 454 1069 15

la05|h|max| 3
2 |nh|max|1 402 981 7200 778 981 22

la05|h|max| 3
2 |nh|max| 1

3 380 725 7200 563 725 23
la05|h|max| 3

2 |nh|sum| 1
5 526 1069 7200 1259 1069 14

la05|h|sum| 1
3 |h|max|1 380 884 7200 3479 787 799 18254

la05|h|sum| 1
3 |h|max| 1

3 380 692 7200 1581 659 666 11537
la05|h|sum| 1

3 |h|sum| 1
5 380 950 7200 307 831 879 8167

la05|h|sum| 1
3 |nh|max|1 391 849 7200 3999 787 835 9136

la05|h|sum| 1
3 |nh|max| 1

3 380 692 7200 4804 659 666 11968
la05|h|sum| 1

3 |nh|sum| 1
5 838 7088 7076 831 838 18308

la05|h|sum| 2
3 |h|max|1 436 690 7200 3346 690 1

la05|h|sum| 2
3 |h|max| 1

3 380 626 7200 5677 626 2
la05|h|sum| 2

3 |h|sum| 1
5 712 6808 2127 712 1

la05|h|sum| 2
3 |nh|max|1 380 706 7200 5997 690 2

la05|h|sum| 2
3 |nh|max| 1

3 380 725 7200 4025 626 1
la05|h|sum| 2

3 |nh|sum| 1
5 380 928 7200 597 712 2

la05|nh|max|1|h|max|1 380 1262 7200 3404 1175 27
la05|nh|max|1|h|max| 1

3 380 791 7200 6479 791 28
la05|nh|max|1|h|sum| 1

5 1269 1311 7200 6591 1307 27
la05|nh|max|1|nh|max|1 394 1175 7200 4074 1175 28
la05|nh|max|1|nh|max| 1

3 380 791 7200 3661 791 28
la05|nh|max|1|nh|sum| 1

5 473 1307 7200 929 1307 29

la05|nh|max| 3
2 |h|max|1 405 1017 7200 4576 981 20

la05|nh|max| 3
2 |h|max| 1

3 380 730 7200 1401 725 21
la05|nh|max| 3

2 |h|sum| 1
5 842 1069 7200 1028 1069 18

la05|nh|max| 3
2 |nh|max|1 380 981 7200 2238 981 17

la05|nh|max| 3
2 |nh|max| 1

3 380 725 7200 1583 725 25
la05|nh|max| 3

2 |nh|sum| 1
5 790 1069 7200 2030 1069 1

la05|nh|sum| 1
3 |h|max|1 507 884 7200 2416 787 835 7952

la05|nh|sum| 1
3 |h|max| 1

3 380 692 7200 2706 659 666 11345
la05|nh|sum| 1

3 |h|sum| 1
5 380 950 7200 1596 889 2307

la05|nh|sum| 1
3 |nh|max|1 495 883 7200 7159 787 835 9317

la05|nh|sum| 1
3 |nh|max| 1

3 380 692 7200 935 659 670 32255
la05|nh|sum| 1

3 |nh|sum| 1
5 380 950 7200 1371 831 879 9433

la05|nh|sum| 2
3 |h|max|1 405 690 7200 6406 690 2

la05|nh|sum| 2
3 |h|max| 1

3 380 626 7200 6549 626 2
la05|nh|sum| 2

3 |h|sum| 1
5 490 712 7200 5034 712 1

la05|nh|sum| 2
3 |nh|max|1 652 690 7200 1760 690 2

la05|nh|sum| 2
3 |nh|max| 1

3 380 659 7200 748 626 1
la05|nh|sum| 2

3 |nh|sum| 1
5 380 1069 7200 512 712 2

Table A.7: Comparison MIP and DP for JSSPM instances (continued)
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Appendix B

Job Shop Scheduling Problem
Instances

This appendix provides the set of JSSP benchmark instances used in this dis-
sertation. It also gives the values of the upper and lower bounds known at the
moment of our experiments. For these instances we did our best to find the
origin of the best known upper bound and lower bound.

The instances can be obtained from [13,112,108]. Information about the
current upper and lower bounds are mostly obtained from [70,112,108]. Note,
the newly found lower bounds given in table 5.5 are not included in the tables
below. Also the brand new results of Vilím, Laborie, and Shaw [120], see also
[119], are not incorporated in these tables as these bounds were not used in the
generation of the computational results of this dissertation.

All the bounds in this appendix can be found on my web site with JSSP
instances. Including the new results mentioned above. This web site can be
found at http://jobshop.jjvh.nl [67]. All optimal solutions that are found in
the course of this dissertation are also included on this web site.
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Job Shop Scheduling Problem Instances

Fisher and Thompson
H. Fisher and G. L. Thompson. Probabilistic Learning Combinations of Local
Job-Shop Scheduling Rules. In: Industrial Scheduling, 15: 225–251. ed. by J. F.
Muth and G. L. Thompson. Prentice Hall, 1963

Instance # jobs # machines Lower bound Upper bound
ft06 6 6 55[46]a 55[46]a
ft10 10 10 930[24]b 930c

ft20 20 5 1165[86] 1165[86]
[24] Carlier and Pinson (1989)
[46] Florian, Trepant, and McMahon (1971)
[86] McMahon and Florian (1975)

a Using algorithms of Schrage [106] and Balas [10]
b Achieved in 1986 [see 2]
c B.J. Lageweg (1984) [see 75]

Table B.1: Instances of Fisher and Thompson [44]

Lawrence
S. Lawrence. Resource Constrained Project Scheduling: An Experimental In-
vestigation of Heuristic Scheduling Techniques (Supplement). Carnegie-Mellon
University, 1984

Instance # jobs # machines Lower bound Upper bound
la01 10 5 666[2] 666[2]
la02 10 5 655[2] 655[85]
la03 10 5 597[7] 597[85]
la04 10 5 590[7] 590[85]
la05 10 5 593[2] 593[2]

la06 15 5 926[2] 926[2]
la07 15 5 890[2] 890[2]
la08 15 5 863[2] 863[2]
la09 15 5 951[2] 951[2]
la10 15 5 958[2] 958[85]

[2] Adams, Balas, and Zawack (1988)
[7] Applegate and Cook (1991)

[85] Matsuo, Suh, and Sullivan (1988)

Table B.2: Instances of Lawrence [79]
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B Lawrence

Instance # jobs # machines Lower bound Upper bound
la11 20 5 1222[2] 1222[2]
la12 20 5 1039[2] 1039[2]
la13 20 5 1150[2] 1150[2]
la14 20 5 1292[2] 1292[2]
la15 20 5 1207[2] 1207[2]

la16 10 10 945[25] 945[25]
la17 10 10 784[25] 784[85]
la18 10 10 848[7] 848[85]
la19 10 10 842[7] 842[85]
la20 10 10 902[7] 902[7]

la21 15 10 1046[118] 1046[118]
la22 15 10 927[7] 927[85]
la23 15 10 1032[2] 1032[2]
la24 15 10 935[7] 935[7]
la25 15 10 977[7] 977[7]

la26 20 10 1218[2] 1218[85]
la27 20 10 1235[2] 1235[26]
la28 20 10 1216[2] 1216[7]
la29 20 10 1152[84] 1152[84]
la30 20 10 1355[2] 1355[2]

la31 30 10 1784[2] 1784[2]
la32 30 10 1850[2] 1850[2]
la33 30 10 1719[2] 1719[2]
la34 30 10 1721[2] 1721[2]
la35 30 10 1888[2] 1888[2]

la36 15 15 1268[25] 1268[25]
la37 15 15 1397[7] 1397[7]
la38 15 15 1196[118] 1196[90]
la39 15 15 1233[7] 1233[7]
la40 15 15 1222[7] 1222[7]

[2] Adams, Balas, and Zawack (1988)
[7] Applegate and Cook (1991)

[25] Carlier and Pinson (1990)
[26] Carlier and Pinson (1994)
[84] Martin (1996)
[85] Matsuo, Suh, and Sullivan (1988)
[90] Nowicki and Smutnicki (1996)

[118] Vaessens, Aarts, and Lenstra (1996)

Table B.2: Instances of Lawrence [79] (continued)
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Job Shop Scheduling Problem Instances

Adams, Balas, and Zawack
Joseph Adams, Egon Balas, and Daniel Zawack. The Shifting Bottleneck
Procedure for Job Shop Scheduling. Management Science, 34.3: 391–401, 1988

Instance # jobs # machines Lower bound Upper bound
abz5 10 10 1234[7] 1234[7]
abz6 10 10 943[7] 943[2]

abz7 20 15 656[84] 656[84]
abz8 20 15 646[21] 665[84]
abz9 20 15 678[73] 678[125]

[2] Adams, Balas, and Zawack (1988)
[7] Applegate and Cook (1991)

[21] Brinkkötter and Brucker (2001)
[73] Koshimura, Nabeshima, Fujita, and Hasegawa (2010)
[84] Martin (1996)

[125] Zhang, Li, Rao, and Guan (2008)

Table B.3: Instances of Adams, Balas, and Zawack [2]

Applegate and Cook
David Applegate and William Cook. A Computational Study of the Job-Shop
Scheduling Problem. ORSA Journal on Computing, 3.2: 149–156, 1991

Instance # jobs # machines Lower bound Upper bound
orb01 10 10 1059[7] 1059[7]
orb02 10 10 888[7] 888[7]
orb03 10 10 1005[7] 1005[7]
orb04 10 10 1005[7] 1005[7]
orb05 10 10 887[7] 887[7]
orb06 10 10 1010a 1010a

orb07 10 10 397a 397a

orb08 10 10 899a 899a

orb09 10 10 934a 934a

orb10 10 10 944a 944a

[7] Applegate and Cook (1991)
a R.J.M. Vaessens using algorithms of [7] (1994) [see 70]

Table B.4: Instances of Applegate and Cook [7]
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B Storer, Wu, and Vaccari

Storer, Wu, and Vaccari
Robert H. Storer, S. David Wu, and Renzo Vaccari. New Search Spaces
for Sequencing Problems with Application to Job Shop Scheduling. Management
Science, 38.10: 1495–1509, 1992

Instance # jobs # machines Lower bound Upper bound
swv01 20 10 1407[84] 1407[84]
swv02 20 10 1475[84] 1475[84]
swv03 20 10 1398[21] 1398[117]
swv04 20 10 1450[117] 1467a

swv05 20 10 1424[84] 1424[84]

swv06 20 15 1591[117] 1671[95]
swv07 20 15 1447[21] 1594[89]
swv08 20 15 1641[21] 1752[29]
swv09 20 15 1605[21] 1655[89]
swv10 20 15 1632[21] 1743[56]

swv11 50 10 2983[117] 2983[92]
swv12 50 10 2972[117] 2977[95]
swv13 50 10 3104[117] 3104[114]
swv14 50 10 2968[11] 2968[11]
swv15 50 10 2885[117] 2885[95]
swv16 50 10 2924[110] 2924[110]
swv17 50 10 2794[110] 2794[110]
swv18 50 10 2852[110] 2852[110]
swv19 50 10 2843[110] 2843[110]
swv20 50 10 2823[110] 2823[110]

[11] Balas and Vazacopoulos (1994)
[21] Brinkkötter and Brucker (2001)
[29] Cheng, Peng, and Lü (2013)
[56] Gonçalves and Resende (2014)
[84] Martin (1996)
[89] Nagata and Tojo (2009)
[92] Nowicki and Smutnicki (2005)
[95] Peng, Lü, and Cheng (2015)

[110] Storer, Wu, and Vaccari (1992)
[114] Thomsen (1997)
[117] Vaessens (1996)

a O. V. Shylo (2013) [see 108]

Table B.5: Instances of Storer, Wu, and Vaccari [110]
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Job Shop Scheduling Problem Instances

Yamada and Nakano
Takeshi Yamada and Ryohei Nakano. A genetic algorithm applicable to large-
scale job-shop instances. In: Parallel instance solving from nature 2 : 281–290.
ed. by Reinhard Männer and Bernard Manderick. Elsevier, 1992.

Instance # jobs # machines Lower bound Upper bound
yn1 20 20 884[73] 884[125]
yn2 20 20 870[21] 904[56]
yn3 20 20 840[21] 892[92]
yn4 20 20 920[21] 968[114]

[21] Brinkkötter and Brucker (2001)
[56] Gonçalves and Resende (2014)
[73] Koshimura, Nabeshima, Fujita, and Hasegawa (2010)
[92] Nowicki and Smutnicki (2005)

[114] Thomsen (1997)
[125] Zhang, Li, Rao, and Guan (2008)

Table B.6: Instances of Yamada and Nakano [123]

Taillard
E.D. Taillard. Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64.2: 278–285, 1993

Instance # jobs # machines Lower bound Upper bound
ta01 15 15 1231[113,111] 1231[113,111]
ta02 15 15 1244a 1244[90]
ta03 15 15 1218[21] 1218[11]
ta04 15 15 1175[21] 1175b

ta05 15 15 1224[21] 1224[21]
ta06 15 15 1238[21] 1238[21]
ta07 15 15 1227[21] 1227[21]
ta08 15 15 1217[21] 1217[11]
ta09 15 15 1274[21] 1274[11]
ta10 15 15 1241a 1241[11]

[11] Balas and Vazacopoulos (1994)
[21] Brinkkötter and Brucker (2001)
[90] Nowicki and Smutnicki (1996)
[111] Taillard (1993)

[113] Taillard (1994)
a R.J.M. Vaessens (1995) [see 112]
b M. Wennink (1995) [see 112]

Table B.7: Instances of Taillard [111]
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B Taillard

Instance # jobs # machines Lower bound Upper bound
ta11 20 15 1323a 1357[93]
ta12 20 15 1351a 1367[11]
ta13 20 15 1282a 1342[66]
ta14 20 15 1345b 1345[90]
ta15 20 15 1304a 1339[93]
ta16 20 15 1304c 1360[66]d
ta17 20 15 1462a 1462[92]e
ta18 20 15 1369b 1396[11]
ta19 20 15 1304c 1332[93]
ta20 20 15 1318a 1348[93]

ta21 20 20 1573c 1642[14]
ta22 20 20 1542c 1600[92]f
ta23 20 20 1474c 1557[92]f
ta24 20 20 1606c 1644[14]
ta25 20 20 1518c 1595[92]e
ta26 20 20 1558c 1643[14]
ta27 20 20 1617c 1680[92]f
ta28 20 20 1591b 1603[125]
ta29 20 20 1525c 1625g

ta30 20 20 1485c 1584[92]f

ta31 30 15 1764[111] 1764h

ta32 30 15 1774[111] 1784i

ta33 30 15 1778b 1791[94]
ta34 30 15 1828[111] 1829[92]f
ta35 30 15 2007b 2007[113,111]
ta36 30 15 1819b 1819h

ta37 30 15 1771[111] 1771[95]
ta38 30 15 1673[111] 1673d

ta39 30 15 1795b 1795h

ta40 30 15 1631b 1669[56]

[11] Balas and Vazacopoulos (1994)
[14] Beck, Feng, and Watson (2011)
[56] Gonçalves and Resende (2014)
[66] Henning (2002)
[90] Nowicki and Smutnicki (1996)
[92] Nowicki and Smutnicki (2005)
[93] Pardalos and Shylo (2006)
[94] Pardalos, Shylo, and Vazacopoulos
(2010)
[95] Peng, Lü, and Cheng (2015)
[111] Taillard (1993)
[113] Taillard (1994)
[125] Zhang, Li, Rao, and Guan (2008)

a R. Schilham (2000) [see 112]
b R.J.M. Vaessens (1995) [see 112]
c Gharbi and Labidi (2011) using algo-
rithms described in [51] [see 112]
d A. Henning (2000) [see 112]
e Achieved in 2002 [see 112]
f Achieved in 2001 [see 112]
g E. Aarts (1996) [see 112]
h E. Aarts, H. ten Eikelder, J.K.
Lenstra and R. Schilham (1999) [see
112]
i In [94] (2010) [see 108]. However 1790
is mentioned. 1785 is found in [56]

Table B.7: Instances of Taillard [111] (continued)
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Job Shop Scheduling Problem Instances

Instance # jobs # machines Lower bound Upper bound
ta41 30 20 1876a 2005[88]
ta42 30 20 1867b 1937[56]
ta43 30 20 1809b 1846[95]
ta44 30 20 1927b 1979[88]
ta45 30 20 1997b 2000[92]c
ta46 30 20 1940[111] 2004[56]
ta47 30 20 1789b 1889[95]
ta48 30 20 1912b 1941d

ta49 30 20 1915b 1961[88]
ta50 30 20 1807b 1923d

ta51 50 15 2760[113,111] 2760[113,111]
ta52 50 15 2756[113,111] 2756[113,111]
ta53 50 15 2717[113,111] 2717[113,111]
ta54 50 15 2839[113,111] 2839[113,111]
ta55 50 15 2679[111] 2679[90]
ta56 50 15 2781[113,111] 2781[113,111]
ta57 50 15 2943[113,111] 2943[113,111]
ta58 50 15 2885[113,111] 2885[113,111]
ta59 50 15 2655[113,111] 2655[113,111]
ta60 50 15 2723[113,111] 2723[113,111]

ta61 50 20 2868[111] 2868[90]
ta62 50 20 2869b 2869e

ta63 50 20 2755[111] 2755[90]
ta64 50 20 2702[11] 2702[90]
ta65 50 20 2725[111] 2725[90]
ta66 50 20 2845[111] 2845[90]
ta67 50 20 2825b 2825[69]
ta68 50 20 2784[11] 2784[90]
ta69 50 20 3071[111] 3071[90]
ta70 50 20 2995[111] 2995[90]

[11] Balas and Vazacopoulos (1994)
[69] Jain (1998)
[56] Gonçalves and Resende (2014)
[88] Nagata and Ono (2013)
[90] Nowicki and Smutnicki (1996)

[92] Nowicki and Smutnicki (2005)
[95] Peng, Lü, and Cheng (2015)
[111] Taillard (1993)
[113] Taillard (1994)

a Gharbi and Labidi (2011) using algorithms described in [51] [see 112]
b R.J.M. Vaessens (1995) [see 112]
c Achieved in 2001 [see 112]
d O. V. Shylo (2013) [see 108]
e J. P. Caldeira (2003) [see 112]

Table B.7: Instances of Taillard [111] (continued)
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B Demirkol, Mehta, and Uzsoy

Instance # jobs # machines Lower bound Upper bound
ta71 100 20 5464[113,111] 5464[113,111]
ta72 100 20 5181[113,111] 5181[113,111]
ta73 100 20 5568[113,111] 5568[113,111]
ta74 100 20 5339[113,111] 5339[113,111]
ta75 100 20 5392[113,111] 5392[113,111]
ta76 100 20 5342[113,111] 5342[113,111]
ta77 100 20 5436[113,111] 5436[113,111]
ta78 100 20 5394[113,111] 5394[113,111]
ta79 100 20 5358[113,111] 5358[113,111]
ta80 100 20 5183[111] 5183[90]

[90] Nowicki and Smutnicki (1996)
[111] Taillard (1993)
[113] Taillard (1994)

Table B.7: Instances of Taillard [111] (continued)

Demirkol, Mehta, and Uzsoy

Ebru Demirkol, Sanjay Mehta, and Reha Uzsoy. Benchmarks for shop
scheduling problems. European Journal of Operational Research, 109.1: 137–141,
1998

Instance # jobs # machines Lower bound Upper bound
dmu01 20 15 2501[21] 2563[66]
dmu02 20 15 2651[21] 2706[66]
dmu03 20 15 2731[21] 2731[21]
dmu04 20 15 2601[21] 2669[21]
dmu05 20 15 2749[21] 2749[21]

dmu06 20 20 2998a 3244[94]
dmu07 20 20 2815a 3046[94]
dmu08 20 20 3051a 3188[94]
dmu09 20 20 2956a 3092[66]
dmu10 20 20 2858a 2984[93]
[21] Brinkkötter and Brucker (2001)
[66] Henning (2002)
[93] Pardalos and Shylo (2006)
[94] Pardalos, Shylo, and Vazacopoulos (2010)

a Gharbi and Labidi (2011) using algorithms described in [51] [see 108]

Table B.8: Instances of Demirkol, Mehta, and Uzsoy [38]
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Instance # jobs # machines Lower bound Upper bound
dmu11 30 15 3395[36,37,38] 3430[95]
dmu12 30 15 3481[36,37,38] 3495[95]
dmu13 30 15 3681[36,37,38] 3681[124]
dmu14 30 15 3394[36,37,38] 3394[91]
dmu15 30 15 3343a 3343[69]

dmu16 30 20 3734a 3751[56]
dmu17 30 20 3709a 3814b

dmu18 30 20 3844[36,37,38] 3844[56]
dmu19 30 20 3669a 3768[95]
dmu20 30 20 3604[36,37,38] 3710[95]

dmu21 40 15 4380[36,37,38] 4380[69]
dmu22 40 15 4725[36,37,38] 4725[69]
dmu23 40 15 4668[36,37,38] 4668[69]
dmu24 40 15 4648[36,37,38] 4648[69]
dmu25 40 15 4164[36,37,38] 4164[69]

dmu26 40 20 4647[36,37,38] 4647[124]
dmu27 40 20 4848[36,37,38] 4848[91]
dmu28 40 20 4692[36,37,38] 4692[69]
dmu29 40 20 4691[36,37,38] 4691[91]
dmu30 40 20 4732[36,37,38] 4732[91]

dmu31 50 15 5640[36,37,38] 5640[69]
dmu32 50 15 5927[36,37,38] 5927[36,37,38]
dmu33 50 15 5728[36,37,38] 5728[36,37,38]
dmu34 50 15 5385[36,37,38] 5385[36,37,38]
dmu35 50 15 5635[36,37,38] 5635[36,37,38]

dmu36 50 20 5621[36,37,38] 5621[69]
dmu37 50 20 5851[36,37,38] 5851[91]
dmu38 50 20 5713[36,37,38] 5713[69]
dmu39 50 20 5747[36,37,38] 5747[69]
dmu40 50 20 5577[36,37,38] 5577[69]

[36] Demirkol, Mehta, and Uzsoy (1996)
[37] Demirkol, Mehta, and Uzsoy (1997)
[38] Demirkol, Mehta, and Uzsoy (1998)
[56] Gonçalves and Resende (2014)
[69] Jain (1998)
[91] Nowicki and Smutnicki (2001)
[95] Peng, Lü, and Cheng (2015)

[124] Zhang, Li, Guan, and Rao (2007)
a Gharbi and Labidi (2011) using algorithms described in [51] [see 108]
b O. V. Shylo (2013) [see 108]

Table B.8: Instances of Demirkol, Mehta, and Uzsoy [38] (continued)
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B Demirkol, Mehta, and Uzsoy

Instance # jobs # machines Lower bound Upper bound
dmu41 20 15 3007a 3248[95]
dmu42 20 15 3172a 3390[95]
dmu43 20 15 3292a 3441b

dmu44 20 15 3283a 3488[56]
dmu45 20 15 3001a 3272b

dmu46 20 20 3575a 4035b

dmu47 20 20 3522a 3939[56]
dmu48 20 20 3447a 3763b

dmu49 20 20 3403a 3710[95]
dmu50 20 20 3496a 3729[95]

dmu51 30 15 3917a 4167[95]
dmu52 30 15 4065a 4311[95]
dmu53 30 15 4141a 4394[95]
dmu54 30 15 4202a 4362b

dmu55 30 15 4140a 4271[95]

dmu56 30 20 4554a 4941[95]
dmu57 30 20 4302a 4655b

dmu58 30 20 4319a 4708[95]
dmu59 30 20 4217a 4624[95]
dmu60 30 20 4319a 4755[95]

dmu61 40 15 4917a 5172b

dmu62 40 15 5033a 5265b

dmu63 40 15 5111a 5326[95]
dmu64 40 15 5130[36,37,38] 5250b

dmu65 40 15 5105a 5190b

dmu66 40 20 5391a 5717[95]
dmu67 40 20 5589a 5813b

dmu68 40 20 5426a 5773[95]
dmu69 40 20 5423a 5709[95]
dmu70 40 20 5501a 5889b

[36] Demirkol, Mehta, and Uzsoy (1996)
[37] Demirkol, Mehta, and Uzsoy (1997)
[38] Demirkol, Mehta, and Uzsoy (1998)
[56] Gonçalves and Resende (2014)
[69] Jain (1998)
[95] Peng, Lü, and Cheng (2015)

a Gharbi and Labidi (2011) using algorithms described in [51] [see 108]
b O. V. Shylo (2013) [see 108]

Table B.8: Instances of Demirkol, Mehta, and Uzsoy [38] (continued)
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Job Shop Scheduling Problem Instances

Instance # jobs # machines Lower bound Upper bound
dmu71 50 15 6080a 6223[95]
dmu72 50 15 6395a 6483[95]
dmu73 50 15 6001a 6163[95]
dmu74 50 15 6123a 6220b

dmu75 50 15 6029a 6197[95]

dmu76 50 20 6342a 6813[95]
dmu77 50 20 6499a 6822[95]
dmu78 50 20 6586a 6770[95]
dmu79 50 20 6650a 6970[95]
dmu80 50 20 6459a 6686[95]
[95] Peng, Lü, and Cheng (2015)

a Gharbi and Labidi (2011) using algorithms described in [51] [see 108]
b O. V. Shylo (2013) [see 108]

Table B.8: Instances of Demirkol, Mehta, and Uzsoy [38] (continued)
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Glossary of Notation

Acronyms

CVRP Capacitated Vehicle Routing Problem 30
DP Dynamic Programming 5
GTR Giant-Tour Representation 30
JPS Jackson’s preemptive schedule 84
JPSM Jackson’s preemptive schedule with scheduled Maintenances 106
JSSP Job Shop Scheduling Problem 33
JSSPM Job Shop Scheduling Problem with scheduled Maintenances 97
LP Linear Programming 67
MC-VRP Multiple Compartment Vehicle Routing Problem 75
MIP Mixed-Integer Programming 97
mTSP Multiple Traveling Salesman Problem 29
TSP Traveling Salesman Problem 28
TSPTW Traveling Salesman Problem with Time Windows 59
VRP Vehicle Routing Problem 29
VRPPD Vehicle Routing Problem with Pickup and Delivery 76
VRPTW Vehicle Routing Problem with Time Windows 78

Common symbols

O() Big O notation 7
LB Lower bound 51
UB Upper bound 51
� Natural numbers {1, 2, 3, . . .} 34
�0 Natural numbers including 0 {0, 1, 2, 3, . . .} 23
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GLOSSARY OF NOTATION

Dynamic Programming specific symbols

β Bookkeeping variables in a state definition 42
E Number of expansions for a partial solution 60
H Number of solutions to be expanded from each stage 61≐ The first and second solution/values are equal 14u The first solution/values dominates the second 14� The first and second solution/values do not dominate each other 14
� Denotes the expansion of a solution with a node (ς�i) 6
γ Compare variables in a state definition 13
φ Fixed variables in a state definition 6
≺ Precedence relation between two DP nodes 70
Ω Set identifiers of optimal solutions 54
ς A solution 6

ς̊ An optimal solution 12?? Splits the variables of φ and γ in a state definition 1477 Splits the variables of γ and β in a state definition 42
ξ State 6

ξ̌ Optimal solution of a state 6
ξ̂ Non-dominated solutions of a state 14

Traveling Salesman Problem symbols

n Number of nodes of a TSP problem 28
s Start node of a TSP used in DP 28

Vehicle Routing Problem symbols

d Destination of a vehicle 29
o Origin of a vehicle 29
r Request 29
v Vehicle 29
n Number of customer requests 29
m Number of vehicles 29
D Set of destinations 29
O Set of origins 29
R Set of requests 29
V Set of vehicles 29
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GLOSSARY OF NOTATION

Job Shop Scheduling Problem symbols

Co Finish time of operation o 34
j Job 34
m Machine 34
Cmax Makespan 34
pmax Maximum operation time 47
o Operation 34
πj(i) i-th machine job j has to visit 34
po Processing time of operation o 34
ψ Schedule 34
α(ς, o) Aptitude, earliest possible completion of o in any expansion of ς 38
j(o) Job for operation o 34
m(o) Machine for operation o 34
λ(S) Last operation in S for each job 37
ε(S) Next operation not in S for each job 37
p(o) Processing time for operation o 34
η(ς) Possible expansions of ς 37
Λ(ς) Last operation in the sequence of ς 37
N Number of jobs 33
M Number of machines 33
J Set of jobs 34
M Set of machines 34
O Set of operations 34
~α Array of aptitude values 38
~η Array of possible expansions 39

JSSP with scheduled Maintenances symbols

D Downtime, processing time of maintenances 97
~u Array of left uptime 102
u Left uptime, before maintenance is required 102
R Maintenance 98
U Uptime, processing time without maintenance 97
N Number of maintenances 104
R Set of maintenances 101

JSSP bounding symbols

o∗ Current operation 112
hmax First possible start of the next maintenance 107
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GLOSSARY OF NOTATION

hmin First possible end of the previous maintenance 107
ro Head of operation o 84
r̃o Temporary head of operation o 108
p+o Remaining processing time of operation o 84
qo Tail of operation o 84
K∗ Maximal set satisfying inequality (6.3) 107
t Current time 84
treq Next relevant time 109
A Set of available operations 111
D Set of delayed operations 111
U Set of unavailable operations 111
M+ Set of machines with operations remaining 109
Ī Set of all operations 104
I Set of job operations 84
Ĭ Set of maintenance operations 104
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Summary

This dissertation examines Dynamic Programming algorithms for routing and
scheduling. These algorithms are based on the famous Dynamic Programming
algorithm for the Traveling Salesman Problem already described over 50 years
ago by Held and Karp [62] (and also independently by Bellman [17]). This
algorithm is largely viewed as theoretical. Based on this algorithm we created
new algorithms for the Vehicle Routing Problem and Job Shop Scheduling
Problem and variants of these problems.

For several problems such a Dynamic Programming algorithm provides the
best known complexity for an algorithm that guarantees to find the optimal value
to the problem. For the Traveling Salesman Problem this was already known for
the Job Shop Scheduling Problem we proved this in Gromicho, van Hoorn, Sal-
danha-da-Gama, and Timmer [60]. Most Dynamic Programming algorithms over
sets have limited practical use as their running time and memory requirements
are exponential. However, we show that by the use of bounding such Dynamic
Programming algorithms can become practical applicable. We also show several
ways to convert such Dynamic Programming algorithms into heuristic algorithms
which then, although the optimality guarantee is lost, have practical value.

The basis of these Dynamic Programming algorithms is recursion over sets. To
use Dynamic Programming over sets on a problem a solution for a such problem
must be represented as a specific sequence of a set of nodes. The Dynamic
Programming algorithm evaluates the best sequence based on the best sequence
for each subset of the nodes. The power in the Dynamic Programming algorithm
lies in the fact that it enables to consider all sequences by the evaluation of
sequences based on each subset. Although there are still exponentially many
subsets (2n) this is exponentially less than the number of possible sequences (n!).

The Dynamic Programming algorithm can be converted into an iterative
process to find all optimal solutions. We show in general how to create such a
procedure and for the Job Shop Scheduling Problem we show the procedure in
more detail. We also show the results and the total number of optimal solutions
for small Job Shop Scheduling Problem benchmark instances.

For the Vehicle Routing Problem we show how to incorporate a large number
of extensions to the Vehicle Routing Problem optimally into the Dynamic
Programming algorithm. We also show the effects of these extensions on the
complexity of the Dynamic Programming algorithm. This creates a general
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framework to solve Vehicle Routing Problems as also described in Gromicho,
van Hoorn, Kok, and Schutten [59]. We also show briefly how such framework
can be used as pricing instrument in a column generation technique. For the
Capacitated Vehicle Routing Problem we show with computational results what
the effect of bounding can be on the Dynamic Programming state space.

We describe how to create a Dynamic Programming algorithm to solve
the Job Shop Scheduling Problem, which provides the best time complexity
to solve this problem to optimality. We show computational results for the
Dynamic Programming algorithm for the Job Shop Scheduling Problem with and
without the use of bounding. For a few Job Shop Scheduling Problem benchmark
instances we are able to improve the best known lower bounds.

We create a new extension to the Job Shop Scheduling Problem by adding
maintenance times to the machines. For this new problem we create a Mixed-
Integer Programming formulation as well as a Dynamic Programming algorithm.
We also create a bounding algorithm to be used within this Dynamic Program-
ming algorithm. A comparison of computational results for both algorithms show
that Dynamic Programming can outperform a state of the art Mixed-Integer
Programming solver using this Mixed-Integer Programming formulation.

For well-known benchmark instances for the Job Shop Scheduling Problem
we provide the best known values for the upper and lower bounds as well as
the origin of these bounds. This information as well as detailed results of all
computational experiments can be found in the appendix.
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including their number, title and title text as published on xkcd.

Comics at chapter start

Page xkcd nr. Title Title text

i 688 Self-Description The contents of any one panel are dependent on the
contents of every panel including itself. The graph
of panel dependencies is complete and bidirectional,
and each node has a loop. The mouseover text has
two hundred and forty-two characters.

1 1053 Ten Thousand Saying ‘what kind of an idiot doesn’t know about
the Yellowstone supervolcano’ is so much more bor-
ing than telling someone about the Yellowstone su-
pervolcano for the first time.

5 287 NP-Complete General solutions get you a 50% tip.
27 399 Travelling Salesman

Problem
What’s the complexity class of the best linear pro-
gramming cutting-plane techniques? I couldn’t find
it anywhere. Man, the Garfield guy doesn’t have
these problems ...

51 244 Tabletop
Roleplaying

I may have also tossed one of a pair of teleportation
rings into the ocean, with interesting results.

67 589 Designated Drivers Calling a cab means cutting into beer money.
83 1542 Scheduling Conflict Neither a spokesperson for the organization nor the

current world champion could be reached for com-
ment.

97 869 Server Attention
Span

They have to keep the adjacent rack units empty.
Otherwise, half the entries in their /var/log/syslog
are just ‘SERVER BELOW TRYING TO START
CONVERSATION *AGAIN*.’ and ‘WISH THEY’D
STOP GIVING HIM SO MUCH COFFEE IT
SPLATTERS EVERYWHERE.’

121 1403 Thesis Defense MY RESULTS ARE A SIGNIFICANT IM-
PROVEMENT ON THE STATE OF THE
AAAAAAAAAAAART
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Comics at chapter start (continued)

Page xkcd nr. Title Title text

125 242 The Difference How could you choose avoiding a little pain over un-
derstanding a magic lightning machine?

159 1417 Seven The days of the week are Monday, Arctic, Wellesley,
Green, Electra, Synergize, and the Seventh Seal.

171 163 Donald Knuth His books were kinda intimidating; rappelling down
through his skylight seemed like the best option.

175 917 Hofstadter “This is the reference implementation of the self-
referential joke.”

187 1369 TMI ‘TMI’ he whispered, gazing into the sea.
189 1543 Team Effort Given the role they play in every process in my body,

really, they deserve this award more than me. Just
gotta figure out how to give it to them. Maybe I can
cut it into pieces to make it easier to swallow ...

193 1237 QR Code Remember, the installer is watching the camera for
the checksum it generated, so you have to scan it
using your own phone.

Comics at chapter end

Page xkcd nr. Title Title text

iii 571 Can’t Sleep If androids someday DO dream of electric sheep,
don’t forget to declare sheepCount as a long int.

iv 381 Mobius Battle Films need to do this more, if only to piss off the
people who have to feed it into the projector.

3 664 Academia vs.
Business

Some engineer out there has solved P=NP and it’s
locked up in an electric eggbeater calibration rou-
tine. For every 0x5f375a86 we learn about, there are
thousands we never see.

4 599 Apocalypse I wonder if I still have time to go shoot a short film
with Kevin Bacon.

26 1605 DNA Researchers just found the gene responsible for mis-
takenly thinking we’ve found the gene for specific
things. It’s the region between the start and the end
of every chromosome, plus a few segments in our mi-
tochondria.

49 936 Password Strength To anyone who understands information theory and
security and is in an infuriating argument with some-
one who does not (possibly involving mixed case), I
sincerely apologize.

50 173 Movie Seating It’s like the traveling salesman problem, but the end-
points are different and you can’t ask your friends
for help because they’re sitting three seats down.

66 806 Tech Support I recently had someone ask me to go get a computer
and turn it on so I could restart it. He refused to
move further in the script until I said I had done
that.

82 1205 Is It Worth the
Time?

Don’t forget the time you spend finding the chart to
look up what you save. And the time spent reading
this reminder about the time spent. And the time
trying to figure out if either of those actually make
sense. Remember, every second counts toward your
life total, including these right now.
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Comics at chapter end (continued)

Page xkcd nr. Title Title text

96 320 28-Hour Day Small print: this schedule will eventually drive one
stark raving mad.

119 1140 Calendar of
Meaningful Dates

In months other than September, the 11th is men-
tioned substantially less often than any other date.
It’s been that way since long before 9/11 and I have
no idea why.

120 1613 The Three Laws of
Robotics

In ordering #5, self-driving cars will happily drive
you around, but if you tell them to drive to a car
dealership, they just lock the doors and politely ask
how long humans take to starve to death.

123 1592 Overthinking On the other hand, it took us embarrassingly long to
clue in to the lung cancer/cigarette thing, so I guess
the real lesson is ”figuring out which ideas are true
is hard.”

124 1539 Planning [10 years later] Man, why are people so comfortable
handing Google and Facebook control over our nu-
clear weapons?

158 371 Compiler Complaint Checking whether build environment is sane ...
build environment is grinning and holding a spatula.
Guess not.

170 1580 Travel Ghost And a different ghost has replaced me in the bed-
room.

174 138 Pointers Every computer, at the unreachable memory address
0x-1, stores a secret. I found it, and it is that all
humans ar– SEGMENTATION FAULT.

185 221 Random Number RFC 1149.5 specifies 4 as the standard IEEE-vetted
random number.

186 979 Wisdom of the
Ancients

All long help threads should have a sticky globally-
editable post at the top saying ‘DEAR PEOPLE
FROM THE FUTURE: Here’s what we’ve figured
out so far ...’

188 1378 Turbine Ok, plan B: Fly a kite into the blades, with a rock
in a sling dangling below it, and create the world’s
largest trebuchet.

191 927 Standards Fortunately, the charging one has been solved now
that we’ve all standardized on mini-USB. Or is it
micro-USB? Shit.

192 1545 Strengths and
Weaknesses

Do you need me to do a quicksort on the whiteboard
or produce a generation of offspring or something?
It might take me a bit, but I can do it.

195 74 Su Doku This one is from the Red Belt collection, of ‘medium’
difficulty.

196 1650 Baby Does it get taller first and then widen, or does it
reach full width before getting taller, or alternate,
or what?
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JSSP

Co Finish time of operation o
j Job
m Machine
Cmax Makespan
pmax Maximum operation time
o Operation
πj(i) i-th machine job j has to visit
po Processing time of operation o
ψ Schedule
α(ς, o) Aptitude
j(o) Job for operation o
m(o) Machine for operation o
λ(S) Last operation in S for each job
ε(S) Next operation per job not in S
p(o) Processing time for operation o
η(ς) Possible expansions of ς
Λ(ς) Last operation in the sequence ς
N Number of jobs
M Number of machines
J Set of jobs
M Set of machines
O Set of operations
~α Array of aptitude values
~η Array of possible expansions

JSSP Bounding

o∗ Current operation
hmax First start of next maintenance
hmin First end of prev maintenance
ro Head of operation o
r̃o temporary head of operation o
p+o Remaining processing time
qo Tail of operation o
K∗ Maximal set creating a block
t Current time
treq Next relevant time
A Set of available operations
D Set of delayed operations
U Set of unavailable operations
M+ Machines with operations left
Ī Set of all operations
I Set of job operations
Ĭ Set of maintenance operations

DP

β Bookkeeping variables
E Number of expansions per solution
H Number of expanded solutions≐ Domination: equalu Domination: dominates� Domination: not comparable
� Expands solution with node
γ Comparable variables
φ Fixed variables
≺ Precedence relation between nodes
Ω Set identifiers of optimal solutions
ς A Solution

ς̊ An optimal solution?? Splits φ and γ in a state definition77 Splits γ and β in a state definition
ξ State

ξ̌ Optimal solution
ξ̂ Non-dominated solutions

TSP

n Number of nodes of a TSP problem
s Start node of a TSP used in DP

VRP

d Destination of a vehicle
o Origin of a vehicle
r Request
v Vehicle
n Number of customer requests
m Number of vehicles
D Set of destinations
O Set of origins
R Set of requests
V Set of vehicles

JSSPM

D Downtime
~u Array of left uptime
u Left uptime
R Maintenance
U Uptime
N Number of maintenances
R Set of maintenances
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