[2] E. Aarts, H. ten Eikelder, J. K. Lenstra and R. Schilham. (
1999) .
[3] J. Adams, E. Balas, and D. Zawack.
The shifting bottleneck procedure for job shop scheduling.
Management Science,
34.3:
391-401,
1988.
doi: 10.1287/mnsc.34.3.391 jstor: 2632051
[4] D. Applegate and W. Cook.
A computational study of job-shop scheduling.
ORSA Journal of Computing,
3.2:
149-156,
1991.
doi: 10.1287/ijoc.3.2.149
[5] Egon Balas.
Machine Sequencing via Disjunctive Graphs: An Implicit Enumeration Algorithm.
Operations Research,
17.6:
941-957,
1969.
doi: 10.1287/opre.17.6.941 jstor: 168317
[6] Egon Balas and Alkis Vazacopoulos.
Guided Local Search with Shifting Bottleneck for Job Shop Scheduling.
Management Science Research Report 609.
Carnegie Mellon University,
1994.
[8] J. Christopher Beck, T. K. Feng, and Jean-Paul Watson.
Combining Constraint Programming and Local Search for Job-Shop Scheduling.
INFORMS Journal on Computing,
23.1:
1-14,
2011.
doi: 10.1287/ijoc.1100.0388
[9] Wolfgang Brinkkötter and Peter Brucker.
Solving open benchmark instances for the job-shop problem by parallel head-tail adjustments.
Solving open benchmark instances for the job-shop problem by parallel head-tail adjustments,
4.1:
53-64,
2001.
doi: 10.1002/1099-1425(200101/02)4:1<53::AID-JOS59>3.0.CO;2-Y
[10] J. P. Caldeira. (
2003) .
[11] J. Carlier and E. Pinson.
[12] achieved in
1986 .
[13] J. Carlier and E. Pinson.
A Practical Use of Jackson's Preemptive Schedule for Solving the Job Shop Problem.
Annals of Operations Research,
26:
269-287,
1990.
[14] J. Carlier and E. Pinson.
Adjustment of heads and tails for the job-shop problem.
European Journal of Operational Research,
78.2:
146-161,
1994.
doi: 10.1016/0377-2217(94)90379-4
[15] T. C. E. Cheng, Bo Peng, and Zhipeng Lü.
A hybrid evolutionary algorithm to solve the job shop scheduling problem.
Annals of Operations Research:
1-15,
2013.
doi: 10.1007/s10479-013-1332-5
[16] Ebru Demirkol, Sanjay V. Mehta, and Reha Uzsoy.
Benchmarking for Shop Scheduling Problems.
Research memorandum 96-4.
Purdue University,
1996.
[17] E. Demirkol, S. Mehta, and R. Uzsoy.
Benchmarks for shop scheduling problems.
European Journal of Operational Research,
109.1:
137-141,
1998.
doi: 10.1016/S0377-2217(97)00019-2
[18] H. Fisher and G. L. Thompson.
Probabilistic learning combinations of local job-shop scheduling rules.
In:
Industrial Scheduling:
225-251.
ed. by J.F. Muth and G.L. Thompson.
Prentice Hall,
1963.
oclc: 781815542
[19] M. Florian, P. Trepant, and G. McMahon.
An Implicit Enumeration Algorithm for the Machine Sequencing Problem.
Management Science,
17.12:
B-782-B-792,
1971.
doi: 10.1287/mnsc.17.12.B782 jstor: 2629469
[21] Anis Gharbi and Mohamed Labidi.
Extending the Single Machine-Based Relaxation Scheme for the Job Shop Scheduling Problem.
Electronic Notes in Discrete Mathematics,
36:
1057-1064,
2010.
doi: 10.1016/j.endm.2010.05.134
[22] Anis Gharbi and Mohamed Labidi. (
2011) using algorithms described in
[21] .
[23] José Fernando Gonçalves and Mauricio G. C. Resende.
An extended Akers graphical method with a biased random-key genetic algorithm for job-shop scheduling.
International Transactions in Operational Research,
21.2:
215-246,
2014.
doi: 10.1111/itor.12044
[24] André Henning.
[25] achieved in
2000 .
[28] A. S. Jain and S. Meeran.
Deterministic job-shop scheduling: Past, present and future.
European Journal of Operational Research,
113.2:
390-434,
1999.
doi: 10.1016/S0377-2217(98)00113-1
[29] Miyuki Koshimura, Hidetomo Nabeshima, Hiroshi Fujita, and Ryuzo Hasegawa.
Solving Open Job-Shop Scheduling Problems by SAT Encoding.
IEICE Transactions on Information and Systems,
E93.D.8:
2316-2318,
2010.
doi: 10.1587/transinf.E93.D.2316
[30] Peter J. M. van Laarhoven, Emile H. L. Aarts, and Jan Karel Lenstra.
Job shop scheduling by simulated annealing.
Operations Research,
40.1:
113-125,
1992.
doi: 10.1287/opre.40.1.113 jstor: 171189
[31] B. J. Lageweg. (
1984) .
[32] S. Lawrence.
Resource Constrained Project Scheduling. An Experimental Investigation of Heuristic Scheduling Techniques (Supplement).
Carnegie-Mellon University,
1984.
[33] Paul Douglas Martin.
A time-oriented approach to computing optimal schedules for the job-shop scheduling problem.
PhD thesis.
Cornell University,
1996.
oclc: 64683112
[34] Hirofumi Matsuo, Chang Juck Suh, and Robert S. Sullivan.
A Controlled Search Simulated Annealing Method for the General Job-Shop Scheduling Problem.
Working paper 03-04-88.
The University of Texas at Austin,
1988.
[35] Graham McMahon and Michael Florian.
On Scheduling with Ready Times and Due Dates to Minimize Maximum Lateness.
Operations Research,
23.3:
475-482,
1975.
doi: 10.1287/opre.23.3.475 jstor: 169697
[36] Yuichi Nagata and Satoshi Tojo.
Guided Ejection Search for the Job Shop Scheduling Problem.
In:
Evolutionary Computation in Combinatorial Optimization:
168-179.
ed. by Carlos Cotta and Peter Cowling.
LNCS, 5482.
Springer,
2009.
doi: 10.1007/978-3-642-01009-5_15 isbn: 978-3-642-01008-8
[37] Yuichi Nagata and Isao Ono.
Guided Constructive Local Search for the Job Shop Scheduling Problem.
submitted for publication,
2013.
[38] Eugeniusz Nowicki and Czeslaw Smutnicki.
Some new tools to solve the job-shop problem.
Technical Report 60/02.
Wroclaw University of Technology,
2001.
[39] Eugeniusz Nowicki and Czeslaw Smutnicki.
[41] achieved in
2001 .
[40] Eugeniusz Nowicki and Czeslaw Smutnicki.
[41] achieved in
2002 .
[41] Eugeniusz Nowicki and Czeslaw Smutnicki.
An Advanced Tabu Search Algorithm for the Job Shop Problem.
Journal of Scheduling,
8.2:
145-159,
2005.
doi: 10.1007/s10951-005-6364-5
[42] Eugeniusz Nowicki and Czeslaw Smutnicki.
A Fast Taboo Search Algorithm for the Job Shop Proble.
Management Science,
42.6:
797-813,
1996.
doi: 10.1287/mnsc.42.6.797 jstor: 2634595
[43] Panos M. Pardalos and Oleg V. Shylo.
An Algorithm for the Job Shop Scheduling Problem based on Global Equilibrium Search Techniques.
Computational Management Science,
3.4:
331-348,
2006.
doi: 10.1007/s10287-006-0023-y
[44] Panos M. Pardalos, Oleg V. Shylo, and Alkis Vazacopoulos.
Solving job shop scheduling problems utilizing the properties of backbone and "big valley".
Computational Optimization and Applications,
47.1:
61-76,
2010.
doi: 10.1007/s10589-008-9206-5
[45] Panos M. Pardalos, Oleg V. Shylo, and Alkis Vazacopoulos. (
2010) . However 1790 is mentioned. 1785 is found in
[23].
[46] Bo Peng, Zhipeng Lü, and T. C. E. Cheng.
A tabu search/path relinking algorithm to solve the job shop scheduling problem.
Computers & Operations Research,
53:
154-164,
2015.
doi: 10.1016/j.cor.2014.08.006
[47] R. Schilham. (
2000) .
[48] Linus Schrage.
Solving Resource-Constrained Network Problems by Implicit Enumeration-Nonpreemptive Case.
Operations Research,
18.2:
263-278,
1970.
doi: 10.1287/opre.18.2.263 jstor: 168683
[49] Oleg V. Shylo. (
2013) .
[51] R.H. Storer, S.D. Wu and R. Vaccari.
New search spaces for sequencing instances with application to job shop scheduling.
Management Science,
38.10:
1495-1509,
1992.
doi: 10.1287/mnsc.38.10.1495
[54] Søren Thomsen.
Metaheuristikker kombineret med Branch & Bound.
Master thesis.
Copenhagen Business School,
1997.
oclc: 464628711
[55] R. J. M. Vaessens. using algorithms of
[4] (
1994) .
[56] R. J. M. Vaessens. (
1995) .
[57] R. J. M. Vaessens, E.H.L. Aarts, and J.K. Lenstra.
Job Shop Scheduling by Local Search.
INFORMS Journal on Computing,
8.3:
302-317,
1996.
doi: 10.1287/ijoc.8.3.302
[58] R. J. M. Vaessens. Addition to the OR-Library
[7].
1996.
[59] Petr Vilím, Philippe Laborie, and Paul Shaw.
Failure-Directed Search for Constraint-Based Scheduling.
In:
Integration of AI and OR Techniques in Constraint Programming:
437-453.
ed. by Laurent Michel.
LNCS, 9075.
Springer,
2015.
doi: 10.1007/978-3-319-18008-3_30 isbn: 978-3-319-18007-6
[61] Petr Vilím, Philippe Laborie, and Paul Shaw.
[59] (
2015) results can be found in
[60].
[62] M. Wennink. (
1995) .
[63] T. Yamada and R. Nakano.
A genetic algorithm applicable to large-scale job-shop instances.
In:
Parallel instance solving from nature II:
281-290.
ed. by R. Manner and B. Manderick.
Elsevier,
1992.
isbn: 978-0-444-89730-5
[64] ChaoYong Zhang, PeiGen Li, ZaiLin Guan, and YunQing Rao.
A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem.
Computers & Operations Research,
34.11:
3229-3242,
2007.
doi: 10.1016/j.cor.2005.12.002
[65] ChaoYong Zhang, PeiGen Li, YunQing Rao, and ZaiLin Guan.
A very fast TS/SA algorithm for the job shop scheduling problem.
Computers & Operations Research,
35.1:
282-294,
2008.
doi: 10.1016/j.cor.2006.02.024